INSIGHT MATHS-6

Contents

1. Number System 2-15
2. Factors and Multiples 16-37
3. Whole Numbers 37-54
4. Integers 54-63
5. Fractions 64-91
6. Simplification 91-98
7. Decimals 98-107
8. Algebraic Expressions 107-118
9. Linear Equations 118-137
10. Ratio, Proportion and Unitary M ethod 137-156
11. Line Segment, Ray and Line 157-159
12. Parallel Lines 159-161
13. Angles and Their M easurement 161-164
14. Constructions 165-170
15. Polygons 170-171
16. Triangles 171-174
17. Quadrilaterals 174-176
18. Circles 177
19. Three-Dimensional Shapes 177-178
20. Two-Dimensional Reflection Symmetry 178
21. Concept of Perimeter and Area 179-192
22. Data Handling 193-195
23. Pictograph 196-199
24. Bar Graph 199-201

Chapter 1 Number System

EXERCISE 1A

1. (a) 8014
(b) 43062
(c) 203605
(d) 5020007
(e) 70400037
(f) 60504303
(g) 155020068
(h) 121220012
2. (a) Seventy four thousand six
(b) Eight lakh eight thousand eighty-six
(c) Forty-three lakh thirty thousand twenty-eight
(d) Two crore six lakh eight thousand thirteen
(e) Six crore twenty lakh four thousand seven hundred five
(f) Seven crore twenty-nine lakh six thousand nine
(g) Twenty-eight crore eight lakh eight thousand eight hundred
(h) Seven crore twenty-six lakh forty thousand nine hundred eight
(i) Five crore fifty lakh fifty thousand fifty.
3. (a) $2 \times 10000+6 \times 1000+6 \times 100+5 \times 10+7 \times 1$
(b) $4 \times 100000+9 \times 1000+8 \times 100+1 \times 10+6 \times 1$
(c) $1 \times 1000000+3 \times 100000+4 \times 1000+5 \times 100+8 \times 1$
(d) $4 \times 10000000+2 \times 1000000+5 \times 100000+2 \times 10000+7 \times 1000$ $+3 \times 100+8 \times 10+2 \times 1$
(e) $8 \times 10000000+8 \times 100000+8 \times 1000+8 \times 1$
(f) $8 \times 10000000+2 \times 1000000+3 \times 10000+6 \times 100+2 \times 10$
4. (a) 53475
(b) 462352
(c) 30205806
(d) 8302903
5. Place value of 7 in $27650934=7000000$

Place value of 7 in $27650934=7$
$\therefore \quad$ Difference $=7000000-7$

$$
=6999993
$$

6. 79520986

7. Greatest 7-digit number $=9999999$

Smallest 7-digit number $=1000000$
\therefore Total number of 7 -digit numbers in all $=9999999-1000000+1$

$$
=9000000
$$

8. Greatest 6 -digit number $=999999$

Smallest 6-digit number $=100000$
\therefore Total number of 6-digit numbers in all $=999999-100000+1$

$$
=900000
$$

9. Number of thousands to make a crore $=\frac{10000000}{1000}=10000$ thousands
10. Number of thousands to make a lakh $=\frac{100000}{1000}=100$ thousands
11. Required number $=10000000-1=9999999$
12. Required number $=9900000-1=9899999$
13. Required number $=9547999+1=9548000$
14. Required number

$$
\begin{aligned}
& =\text { Original number }- \text { number obtained by reversing its digit } \\
& =837-738 \\
& =99
\end{aligned}
$$

15. Arranging the digits given in descending order: $9,6,4,3,2,0$
\therefore Required largest number $=964320$
16. All 3 -digit numbers using $2,3,4$ are :

$$
234,243,324,342,423,432
$$

17. Arranging the digits given in ascending order : $0,1,3,5,7$
\therefore Required smallest number $=10357$
18.

	HM	TM	M	H Th	T Th	Th	H	T	O
(a)		3	0	1	0	5	0	6	3
(b)		5	2	2	0	5	0	0	6
(c)			5	0	0	5	0	0	5

19. International Place-value chart :

	HM	TM	M	H Th	T Th	Th	H	T	O
(a)				7	3	5	8	2	1
(b)			6	0	5	7	8	9	4
(c)		5	6	9	4	3	8	2	1
(d)		3	7	5	0	2	0	9	3
(e)		8	9	3	5	0	0	6	4
(f)		9	0	7	0	3	0	0	6

Number Names:
(a) Seven hundred thirty-five thousand eight hundred twenty-one
(b) Six million fifty-seven thousand eight hundred ninety-four
(c) Fifty-six million nine hundred forty-three thousand eight hundred twenty-one
(d) Thirty-seven million five hundred two thousand ninety-three
(e) Eighty-nine million three hundred fifty thousand sixty-four
(f) Ninety million seven hundred three thousand and six

EXERCISE 1B

1. (a) $2004578 \triangle 898976$
(b) $4683025 \quad<20346502$
(c) $4365890 \square 4370263$
(d) $20468790 \quad<22354678$
(e) $38697492>8976523$
(f) $58994602 \leq 58995032$
2. (a) $990357<9873426<9874012<24615019<24620010$
(b) $5694437<5695440<56943201<56943300<56944000$
(c) $700087<8014257<8014306<8015032<10012458$
(d) $893245<893425<980134<1020216<1020304<1021403$
3. (a) $102345680>63521047>63514759>7355014>7354206$
(b) $23794206>23756819>5032790>5032786>987876$
(c) $16060666>16007777>1808090>1808088>190909>181888$
(d) $1712040>1704382>1702497>201200>200175>199988$

EXERCISE 1C

1. Number of persons in first year $=13789509$

Number of persons in second year $=12976498$
Total number of persons during these years $=13789509+12976498$

$$
=26766007
$$

		1	1	1	1	1	1
C	TL	L	T Th Th	H	T	O	
1	3	7	8	9	5	0	9
+	1	2	9	7	6	4	9
2	6	7	6	6	0	0	7

Hence, 26766007 persons visited the shrine during these two years.
2. Number of bags produced by I mill $=24809565$

Number of bags produced by II mill $=18738576$
Number of bags produced by III mill $=9564568$
Total number of bags $=24809565+18738576+9564568$

$$
=53112709
$$

C	TL	L	T Th	Th	H	T	O
2	4	8	0	9	5	6	5
1	8	7	3	8	5	7	6
+	9	5	6	4	5	6	8
5	3	1	1	2	7	0	9

Hence, 53112709 bags were produced by all the three factories during last year.
3. Required number $=37684955+3615045$

37684955
$=41300000$

376815045
$+\quad 36150000$
41300

4. Votes recieved by first candidate $=687905$ L T Th Th H T O
Votes recieved by second candidate $=495086$
Votes recieved by third candidate $=93756$
Total number of votes $=687905+495086+93756$

$$
=1276747
$$

Now, number of invalid votes $=13849$
Number of persons who did not vote $=25467$
$\therefore \quad$ Number of votes registered

$$
\begin{aligned}
& =1276747+13849+25467 \\
& =1316063
\end{aligned}
$$

L T Th Th H T O				
687905				
495086				
9				
1276747				
TLLT Th Th H T O				
12	7		7	47
	1		8	49
+	2			67
13	1		0	6

Hence, 1316063 votes were registered.
5. Number of bulbs produced in first year $=8765435$
(a) Number of bulbs produced in next year $=8765435+1378689$

$$
\text { CTL LT Th Th H T O }=10144124
$$

$$
\begin{array}{lllllll}
8 & 7 & 6 & 5 & 4 & 3 & 5
\end{array} \quad \text { Hence, } 10144124 \text { bulbs were produced }
$$

$$
\begin{array}{llllllll}
+1 & 3 & 7 & 8 & 689 \\
\hline 10 & 1 & 4 & 4 & 1 & 24
\end{array} \quad \text { during the second year. }
$$

(b) Total number of bulbs produced $=8765435+10144124$

$$
\text { CTL LT Th Th H T O }=18909559
$$

87655435 Hence, 18909559 bulbs were produced

| 1 | 014 | 4 | 124 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 18 | 9 | 0 | 9559 | during the two years.

6. Sale during the first year $={ }^{`} 20956480$

Sale during the next year

$$
\begin{aligned}
& =` 20956480+` 6709570 \\
& =` 27666050
\end{aligned}
$$

\therefore Total sale during these two years $=` 20956480+{ }^{`} 27666050$

$$
\text { C TL LT Th Th H T O }=` 48622530
$$

209566480
+27666050
48622

Hence, the sale receipt of two company during these two years was ` 48622530 .
7. Total population in town $=28756304$

Number of females $=16987059$
Number of males $=28756304-16987059$

$$
=11769245
$$

Hence, 11769245 males are in the town.
8. Required number $=10000000-5643879$

$$
=4356121
$$

9. Required number $=11010101-2635967$

$$
=8374134
$$

10. Sum of two numbers $=10750308$

$$
\begin{aligned}
\text { One number } & =8967519 \\
\therefore \quad \text { Other number } & =10750308-8967519 \\
& =1782789
\end{aligned}
$$

11. Required number $=13246510-4658642$

$$
=8587868
$$

12. Rajat had money $=$ ' 20000000

He spent money $=` 13607085$
Money left with him

$$
\begin{aligned}
& =` 20000000-` 13607085 \\
& =` 6392915
\end{aligned}
$$

Hence, ` 6392915 is left with Rajat. 13. Total amount \(=` 10672540\)

Wife got money =` 4836980 Son got money \(=` 3964790\)
Money got by daughter

$$
\begin{aligned}
& =`\{10672540-(4836980+3964790)\} \\
& =`(10672540-8801770) \\
& =` 1870770
\end{aligned}
$$

Hence, daughter received an amount of ` 1870770 .

C TL LTTh Th H T O
10000000
$\begin{array}{r}5643879 \\ \hline 4356121 \\ \hline\end{array}$
C TL LTTh Th H T O
$\begin{array}{llllllll}1 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{r}2635967 \\ \hline 8374134\end{array}$
C TL LTTh Th H T O
10750308
$\begin{array}{r}8967519 \\ \hline 1782789\end{array}$
C TL LTTh Th H T O

1324
-4655810
85887868

CTLLTTh Th H T O
200000000
$\begin{array}{r}23607085 \\ \hline 6392915 \\ \hline\end{array}$

TLLTTh Th H T O
4836980
+3966479
88011770

C TL LTTh Th H T O
10672540
$\begin{array}{r}8801770 \\ \hline 1870770\end{array}$

14. Cost of 1 table $={ }^{{f7ca16e9b-3753-4107-a43f-006b469d2d6b}(1525 \times 525)$	+525
$={ff2bd8d8c-399f-4ac8-9d00-3bc63fa9f7fa} 800625. & \(3050 \times$ $7625 \times x$	
	$7625 \times \times$
	800625

15. Number of pens produced in 1 day $=6985$

6985
Number of pens produced in 343 days $=6985 \times 343$

$$
=2395855
$$

Hence, 2395855 pens will be produced in 343 days.
$\times 343$
20955 $27940 \times$ $20955 \times x$ 2395855
16. We know, 1 year $=12$ months

$$
15 \text { years }=(12 \times 15) \text { months } 7645
$$

$$
=180 \text { months }
$$

$$
\begin{array}{r}
\times 180 \\
\hline
\end{array}
$$

Money saved in 1 month $={ }^{`} 7645$
Money saved in 180 months $=`(7645 \times 180)$
Hence, Mr. Gupta will save `\(\quad \begin{aligned} & \text {` } 1376100 in 15 years.\end{aligned}\)
17. Distance covered in 1 hour $=1275 \mathrm{~km}$

Distance covered in 52 hours $=(1275 \times 52) \mathrm{km}$ $=66300 \mathrm{~km}$
Hence, helicopter will cover 66300 km in 52 hours.

1275
$\times 52$
2550
$6375 \times$
66300

18. Product of two numbers $=13421408$

$$
\text { One number }=364
$$

$$
\text { Other number }=13421408 \div 364
$$

$$
=36872
$$

$$
\begin{aligned}
& 36872 \\
& 3 6 4 \longdiv { 1 3 4 2 1 4 0 8 } \\
& \frac{-1092}{2501} \\
& \begin{array}{r}
-2184 \\
3174
\end{array} \\
& \frac{-2912}{2620} \\
& \begin{array}{r}
-2548 \\
728
\end{array} \\
& \begin{array}{r}
-728 \\
\hline
\end{array}
\end{aligned}
$$

19. Cost of 36 flats $=` 68251500$

$$
\begin{aligned}
& \frac{1895875}{36} \begin{array}{c}
68251500 \\
-36 \\
322 \\
-288 \\
\hline 345
\end{array}
\end{aligned}
$$

Cost of 1 flat $=`(68251500 \div 36)$
$=` 1895875$
Hence, the cost of each flat is ` 1895875.
-324
211
-180
315
$\frac{-288}{270}$

-252
180

$\frac{-180}{\times}$
20. Mass of cylinder filled with gas $=32 \mathrm{~kg} 650 \mathrm{~g}$
kg g
Mass of empty cylinder $=15 \mathrm{~kg} 280 \mathrm{~g}$
32650
Mass of gas $=32 \mathrm{~kg} 650 \mathrm{~g}-15 \mathrm{~kg} 280 \mathrm{~g}$ -15280 $=17 \mathrm{~kg} 370 \mathrm{~g}$
$17 \quad 370$
Hence, 17 kg 370 g of the gas is contained in cylinder.
21. Cloth needed to make 1 Kurta $=3 \mathrm{~m} 75 \mathrm{~cm} \quad \mathrm{~m} \mathrm{~cm}$

Cloth needed to make 12 such Shirt (Kurtas)

$$
375
$$

$$
\begin{aligned}
& =3 \mathrm{~m} \mathrm{75} \mathrm{~cm} \times 12 \\
& =45 \mathrm{~m}
\end{aligned}
$$

$$
\begin{array}{r}
\times 12 \\
\hline 750
\end{array}
$$

Hence, 45 m long cloth will be required to make 12 shirts.
$\begin{array}{r}375 x \\ \hline 4500 \\ \hline\end{array}$
22. Cloth needed to make 8 trousers $=14 \mathrm{~m} 80 \mathrm{~cm}$

Cloth needed to make 1 trousers $=14 \mathrm{~m} 80 \mathrm{~cm} \div 8$

Hence, 1 m 85 cm long cloth will be required to

$$
\frac{85 \mathrm{~cm}}{8 \longdiv { 6 8 0 \mathrm { cm } }}
$$ make each trouser.

1 m
$8 \longdiv { 1 4 m }$
$\frac{-8}{6 m}$

$$
\begin{aligned}
& =1 \mathrm{~m} 85 \mathrm{~cm} \\
6 \mathrm{~m} & =6 \times 100 \mathrm{~cm}=600 \mathrm{~cm} \\
\therefore 600+80 & =680 \mathrm{~cm}
\end{aligned}
$$

$$
\frac{-64}{40}
$$

$$
\frac{-40}{\times}
$$

23. Mass of a box $=2 \mathrm{~kg} 750 \mathrm{~g} \quad \mathrm{~kg} \mathrm{~g}$

Mass of 14 boxes $=2 \mathrm{~kg} 750 \mathrm{~g} \times 14 \quad 2750$
$=38 \mathrm{~kg} 500 \mathrm{~g}$
Hence, the total mass of 14 boxes is 38 kg 500 g .

$\times \quad 14$
11000
$2750 \times$
38500

24. Mass of 8 packets $=10 \mathrm{~kg} 600 \mathrm{~g}$

$$
8 \longdiv { 1 0 \mathrm { kg } }
$$

Mass of 1 packet $=10 \mathrm{~kg} 600 \mathrm{~g} \div 8$
325 g
$8 \longdiv { 2 6 0 0 \mathrm { g } }$
$\frac{-24}{20}$
$\therefore \quad 2 \mathrm{~kg}=2 \times 1000 \mathrm{~g}=2000 \mathrm{~g}$
$\therefore 2000 \mathrm{~g}+600 \mathrm{~g}=2600 \mathrm{~g}$

$$
\frac{-16}{40}
$$

Hence, the mass of each packet is 1 kg 325 g .

$$
\frac{-40}{\times}
$$

25. Total length of wire $=30 \mathrm{~m}$

Number of pieces $=6$
Length of each piece $=30 \mathrm{~m} \div 6=5 \mathrm{~m}$
Hence, length of each piece is 5 m .

5 m
$6 \longdiv { 3 0 \mathrm { m } }$
$\begin{array}{r}-30 \\ \times \\ \hline\end{array}$

EXERCISE 1D

1. (a) In 27 , the ones digit is $7>5$.
\therefore the required rounded number $=30$
(b) In 185 , the ones digit is $5=5$.
\therefore the required rounded number $=190$
(c) In 2778, the ones digit is $8>5$.
\therefore the required rounded number $=2780$
(d) In 27489, the ones digit is $9>5$.
\therefore the required rounded number $=27490$
2. (a) In 924 , the tens digit is $2<5$.
\therefore the required rounded number $=900$
(b) In 2158, the tens digit is $5=5$.
\therefore the required rounded number $=2200$
(c) In 54237 , the tens digit is $3<5$.
\therefore the required rounded number $=54200$
(d) In 89376 , the tens digit is $7>5$.
\therefore the required rounded number $=89400$
3. (a) In 875 , the hundreds digit is $8>5$.
\therefore the required rounded number $=1000$
(b) In 5937, the hundreds digit is $9>5$.
\therefore the required rounded number $=6000$
(c) In 27826, the hundreds digit is $8>5$.
\therefore the required rounded number $=28000$
(d) In 37473 , the hundreds digit is $4<5$.
\therefore the required rounded number $=37000$
4. (a) In 28321, thousands digit is $8>5$.
\therefore the required rounded number $=30000$
(b) In 47423 , thousands digit is $7>5$.
\therefore the required rounded number $=50000$
(c) In 23680, thousands digit is $3<5$.
\therefore the required rounded number $=20000$
(d) In 381529 , thousands digit is $1<5$.
\therefore the required rounded number $=380000$
5. (a) 46 estimated to the nearest ten $=50$

23 estimated to the nearest ten $=20$
$(\because 6>5)$

Hence, the required estimation $=(50+20)=70$
(b) 54 estimated to the nearest ten $=50$

87 estimated to the nearest ten $=90$
Hence, the required estimation $=50+90=140$
(c) 12 estimated to the nearest ten $=10$
$(\because 2<5)$
58 estimated to the nearest ten $=60$ $(\because 8>5)$
Hence, the required estimation $=10+60=70$
(d) 538 estimated to the nearest ten $=540$

276 estimated to the nearest ten $=280$
Hence, the required estimation $=540+280=820$
(e) 356 estimated to the nearest ten $=360$
$(\because 6>5)$
275 estimated to the nearest ten $=280$
$(\because 5=5)$
Hence, the required estimation $=360+280=640$
(f) 463 estimated to the nearest ten $=460$
$(\because 3<5)$
182 estimated to the nearest ten $=180$
$(\because 2<5)$
Hence, the required estimation $=460+180=640$
6. (a) 170 estimated to the nearest hundred $=200$

395 estimated to the nearest hundred $=400$
Hence, the required estimation $=200+400=600$
(b) 236 estimated to the nearest hundred $=200 \quad(\because 3<5)$

689 estimated to the nearest hundred $=700$
$(\because 8>5)$
Hence, the required estimation $=200+700=900$
(c) 458 estimated to the nearest hundred $=500$
$(\because 5=5)$
324 estimated to the nearest hundred $=300$
$(\because 2<5)$
Hence, the required estimation $=500+300=800$
(d) 5130 estimated to the nearest hundred $=5100$
$(\because 3<5)$
1410 estimated to the nearest hundred $=1400$
$(\because 1<5)$
Hence, the required estimation $=5100+1400=6500$
(e) 3280 estimated to the nearest hundred $=3300$

4395 estimated to the nearest hundred $=4400$
Hence, the required estimation $=3300+4400=7700$
(f) 10083 estimated to the nearest hundred $=10100$

29380 estimated to the nearest hundred $=29400$
Hence, the required estimation $=10100+29400=39500$
7. (a) 32836 estimated to the nearest thousand $=33000$

16466 estimated to the nearest thousand $=16000 \quad(\because 4<5)$
Hence, the required estimation $=33000+16000=49000$
(b) 46703 estimated to the nearest thousand $=47000$
$(\because 7>5)$
$(\because 3<5)$
Hence, the required estimation $=47000+11000=58000$
(c) 10083 estimated to the nearest thousand $=10000$
$(\because 0<5)$
29380 estimated to the nearest thousand $=29000 \quad(\because 3<5)$
Hence, the required estimation $=10000+29000=39000$
8. (a) 97 estimated to the nearest ten $=100$

38 estimated to the nearest ten $=40$
Hence, the required estimation $=100-40=60$
(b) 53 estimated to the nearest ten $=50$
$(\because 3<5)$
18 estimated to the nearest ten $=20$
$(\because 8>5)$
Hence, the required estimation $=50-20=30$
(c) 409 estimated to the nearest ten $=410$
$(\because 9>5)$
148 estimated to the nearest ten $=150$
Hence, the required estimation $=410-150=260$
9. (a) 957 estimated to the nearest hundred $=1000$
$(\because 5=5)$
578 estimated to the nearest hundred $=600$
Hence, the required estimation $=1000-600=400$
(b) 678 estimated to the nearest hundred $=700$
$(\because 7>5)$
215 estimated to the nearest hundred $=200$
$(\because 1<5)$
Hence, the required estimation $=700-200=500$
(c) 5612 estimated to the nearest hundred $=5600$

3095 estimated to the nearest hundred $=3100$
$(\because 9>5)$
Hence, the required estimation $=5600-3100=2500$
10. (a) 47005 estimated to the nearest thousand $=47000$

39488 estimated to the nearest thousand $=39000$
$(\because 0<5)$

Hence, the required estimation $=47000-39000=8000$
(b) 35863 estimated to the nearest thousand $=36000$

27677 estimated to the nearest thousand $=28000$
$(\because 5=5)$

Hence, the required estimation $=36000-28000=8000$
(c) 7258 estimated to the nearest thousand $=7000$ $(\because 2<5)$
2429 estimated to the nearest thousand $=2000$ $(\because 4<5)$
Hence, the required estimation $=7000-2000=5000$

EXERCISE 1E

1. (a) 57 estimated to the nearest ten $=60$

42 estimated to the nearest ten $=40$
Hence, the required estimation $=60 \times 40=2400$
(b) 44 estimated to the nearest ten $=40$

38 estimated to the nearest ten $=40$
Hence, the required estimation $=40 \times 40=1600$
(c) 37 estimated to the nearest ten $=40$

52 estimated to the nearest ten $=50$
Hence, the required estimation $=40 \times 50=2000$
(d) 61 estimated to the nearest ten $=60$

85 estimated to the nearest ten $=90$
Hence, the required estimation $=60 \times 90=5400$
(e) 53 estimated to the nearest ten $=50$

47 estimated to the nearest ten $=50$
Hence, the required estimation $=50 \times 50=2500$
(f) 12 estimated to the nearest ten $=10$

25 estimated to the nearest ten $=30$
Hence, the required estimation $=10 \times 30=300$
2. (a) 423 estimated to the nearest hundred $=400$

158 estimated to the nearest hundred $=200$
Hence, the required estimation $=400 \times 200=80000$
(b) 376 estimated to the nearest hundred $=400$

123 estimated to the nearest hundred $=100$
Hence, the required estimation $=400 \times 100=40000$
(c) 264 estimated to the nearest hundred $=300$

147 estimated to the nearest hundred $=100$
Hence, the required estimation $=300 \times 100=30000$
3. (a) 359 estimated upwards $=400$

76 estimated downwards $=70$
Hence, the estimated product $=400 \times 70=28000$
(b) 267 estimated upwards $=300$

146 estimated downwards $=100$
Hence, the estimated product $=300 \times 100=30000$
(c) 183 estimated upwards $=200$

154 estimated downwards $=100$
Hence, the estimated product $=200 \times 100=20000$
4. (a) 578 estimated downwards $=500$

369 estimated upwards $=400$
Hence, the estimated product $=500 \times 400=200000$
(b) 472 estimated downwards $=400$

76 estimated upwards $=100$
Hence, the estimated product $=400 \times 100=40000$
(c) 356 estimated downwards $=300$

278 estimated upwards $=300$
Hence, the estimated product $=300 \times 300=90000$

EXERCISE 1F

1. $83 \div 17$ is approximately equal to $80 \div 20=4$
2. $75 \div 23$ is approximately equal to $80 \div 20=4$
3. $87 \div 28$ is approximately equal to $90 \div 30=3$
4. $725 \div 23$ is approximately equal to $700 \div 20=35$
5. $275 \div 25$ is approximately equal to $300 \div 30=10$
6. $193 \div 24$ is approximately equal to $200 \div 20=10$
7. $929 \div 29$ is approximately equal to $900 \div 30=30$
8. $633 \div 33$ is approximately equal to $600 \div 30=20$
9. $868 \div 38$ is approximately equal to $900 \div 40=22.5(\approx 23)$
10. $858 \div 39$ is approximately equal to $900 \div 40=22.5(\approx 23)$

EXERCISE 1G

1. (a) $3=1+1+1=$ III
(b) $7=5+1+1=$ VII
(c) $15=10+5=\mathrm{XV}$
(d) $28=10+10+5+1+1+1=$ XXVIII
(e) $39=10+10+10+(10-1)=$ XXXIX
(f) $45=(50-10)+5=\mathrm{XLV}$
(g) $56=50+5+1=\mathrm{LVI}$
(h) $63=50+10+1+1+1=$ LXIII
(i) $72=50+10+10+1+1=\mathrm{LXXII}$
(j) $80=50+10+10+10=\mathrm{LXXX}$
(k) $92=(100-10)+1+1=\mathrm{XCII}$
(l) $97=(100-10)+5+1+1=$ XCVII
(m) $99=(100-10)+(10-1)=$ XCIX
(n) $110=100+10=\mathrm{CX}$
(o) $125=100+10+10+5=\mathrm{CXXV}$
2. (a) $154=100+50+(5-1)=$ CLIV
(b) $185=100+50+10+10+10+5=$ CLXXXV
(c) $230=100+100+10+10+10=\mathrm{CCXXX}$
(d) $343=100+100+100+(50-10)+1+1+1=$ CCCXLIII
(e) $485=(500-100)+50+10+10+10+5=$ CDLXXXV
(f) $595=500+(100-10)+5=\mathrm{DXCV}$
(g) $613=500+100+10+1+1+1=$ DCXIII
(h) $757=500+100+100+50+5+1+1=$ DCCLVII
3. (a) $\mathrm{XXVII}=10+10+5+1+1=27$
(b) XXXIV $=10+10+10+(5-1)=34$
(c) $\mathrm{XLV}=(50-10)+5=45$
(d) $\mathrm{LIV}=50+(5-1)=54$
(e) $\mathrm{LXXXIV}=50+10+10+10+(5-1)=84$
(f) $\mathrm{XCI}=(100-10)+1=91$
(g) XCVI $=(100-10)+5+1=96$
(h) $\mathrm{CXI}=100+10+1=111$
(i) $\mathrm{CLIV}=100+50+(5-1)=154$
(j) $\mathrm{CCXXIV}=100+100+10+10+(5-1)=224$
(k) $\mathrm{CCCLXV}=100+100+100+50+10+5=365$
(l) $\mathrm{CDXIV}=(500-100)+10+(5-1)=414$
(m) CDLXIV $=(500-100)+50+10+(5-1)=464$
(n) $\mathrm{DVI}=500+5+1=506$
(o) $\mathrm{DCCLXVI}=500+100+100+50+10+5+1=766$
4. (a) V is never subtracted.
$\therefore \mathrm{VC}$ is wrong.
(b) I is subtracted from V and X only.
$\therefore \mathrm{IL}$ is wrong.
(c) V is never repeated.
\therefore VVII is wrong.
(d) IX cannot occur to the left of X.
\therefore IXX is wrong.

EXERCISE 1H

1. (b)
2. Place value of 5 in $78653421=50000$

Face value of 5 in $78653421=5$
\therefore Difference $=50000-5=49995$
\therefore (c) is correct.
3. \therefore (a) is correct.
4. 48632950

\therefore (c) is correct.
5. Greatest 7-digit number $=9999999$

Smallest 7-digit number $=1000000$
\therefore Number of 7-digit numbers $=999999-1000000+1=9000000$
\therefore (b) is correct.
6. Greatest 4-digit number $=9999$

Smallest 4-digit number $=1000$
\therefore Number of 4-digit numbers $=9999-1000+1=9000$
\therefore (b) is correct.
7. $1000000-1=999999$
\therefore (b) is correct.
8. Greatest 8 -digit number $=99999999$

Smallest 8-digit number $=10000000$
\therefore Number of 8-digit numbers $=99999999-10000000+1=90000000$
\therefore (c) is correct.
9. (c)
10. (a)

HOTS

- CMXCIX $=(1000-100)+(100-10)+(10-1)$

$$
=900+90+9=999
$$

VALUE BASED

- Meenu saves every month $=` 859$

Her saving in one year $=12 \times{ }^{`} 859 \quad(\because 1$ year $=12$ months $)$

$$
=` 10308
$$

10308 estimated to the nearest hundred $=` 10300$
Hence, estimated amount of money saved by her in one year is ` 10300.

Chapter 2 Factors and Multiples

EXERCISE 2A

1. (a) $20: 1,2,4,5,10,20$
(b) $36: 1,2,3,4,6,9,12,18,36$
(c) $60: 1,2,3,4,5,6,10,12,15,20,30,60$
(d) $75: 1,3,5,15,25,75$
2. (a) $17: 17,34,51,68,85$
(b) $23: 23,46,69,92,115$
(c) $65: 65,130,195,260,325$
(d) $70: 70,140,210,280,350$
3. (a) 42 is exactly divisible by 2 , so it is an even number.
(b) 47 is not divisible by 2 , so it is an odd number.
(c) 60 is exactly divisible by 2 , so it is an even number.
(d) 68 is exactly divisible by 2 , so it is an even number.
(e) 79 is not divisible by 2 , so it is an odd number.
(f) 174 is exactly divisible by 2 , so it is an even number.
(g) 231 is not divisible by 2 , so it is an odd number.
(h) 352 is exactly divisible by 2 , so it is an even number.
4. Prime number : The numbers having exactly two factors (1 and number itself) are called prime numbers.
For example : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
5. (a) $11,13,17,19,23,29$
(b) $37,41,43,47,53,59$
(c) $67,71,73,79$
(d) $83,89,97$
6. (a) 2
(b) 2
(c) 3
7. (a) 31 has factors 1 and 31, so it is a prime number.
(b) 51 has factors $1,3,17$ and 51 , so it is not a prime number.
(c) 93 has factors $1,3,31$ and 93 , so it is not a prime number.
(d) 96 has factors $1,2,3,4,6,8,12,16,24,32,48,96$, so it is not a prime number.
8. $90,91,92,93,94,95,96$
9. Composite numbers : The numbers which have more than two factors are called composite numbers.
Yes, a composite number can be odd. Smallest odd composite number is 9.
10. Twin primes : If the difference between any two prime numbers is 2 , then such pair of prime numbers are called twin primes.
Pair of twin primes between 50 and 100 are :
$(59,61),(71,73)$
11. Co-primes: Two numbers are said to be co-primes if they do not have a common factor other than 1 .
$(2,3),(3,5),(6,7),(4,9),(8,15)$ are five pairs of co-primes.
No, co-prime are not always prime.
Example : 9, 10 are co-primes, while none of 9 and 10 is prime number.
12. (a) $36=7+29$
(b) $42=5+37$
(c) $84=17+67$ (d) $98=79+19$
13. (a) $31=5+7+19$
(b) $35=5+7+23$
(c) $49=3+5+41$
(d) $63=7+13+43$
14. (a) $36=17+19$
(b) $84=41+43$
(c) $120=59+61$
(d) $144=71+73$
15. (b)

EXERCISE 2B

1. (a) In 168 , ones digit is 8 , which is divisible by 2 .
$\therefore 168$ is divisible by 2 .
(b) In 8370 , ones digit is 0 , which is divisible by 2 .
$\therefore 8370$ is divisible by 2 .
(c) In 63921, ones digit is 1 , which is not divisible by 2 .
$\therefore 63921$ is not divisible by 2 .
(d) In 367314, ones digit is 4 , which is divisible by 2 .
$\therefore 367314$ is divisible by 2 .
2. (a) Sum of digits $=5+3+3=11$, which is not divisible by 3 .
$\therefore 533$ is not divisible by 3 .
(b) Sum of digits $=2+0+7+0+1=10$, which is not divisible by 3 .
$\therefore 20701$ is not divisible by 3 .
(c) Sum of digits $=1+0+0+3+8=12$, which is divisible by 3 .
$\therefore 10038$ is divisible by 3 .
(d) Sum of digits $=8+7+2+6+4+5=32$, which is not divisible by 3 .
$\therefore 872645$ is not divisible by 3 .
3. (a) In 738,38 is not divisible by 4 .
$\therefore 738$ is not divisible by 4 .
(b) In 3314, 14 is not divisible by 4 .
$\therefore 3314$ is not divisible by 4 .
(c) In 72712,12 is divisible by 4 .
$\therefore 72712$ is divisible by 4 .
(d) In 720832, 32 is divisible by 4 .
$\therefore 720832$ is divisible by 4 .
4. (a) In 2850, ones digit is 0 .
$\therefore 2850$ is divisible by 5 .
(b) In 27485, ones digits is 5 .
$\therefore 27485$ is divisible by 5 .
(c) In 28506, ones digit is 6 .
$\therefore 28506$ is not divisible by 5 .
(d) In 834505, ones digit is 5 .
$\therefore 834505$ is divisible by 5 .
5. (a) 3030 is divisible by both 2 and 3 .
$\therefore 3030$ is divisible by 6 .
(b) 17852 is divisible by 2 but not by 3 .
$\therefore 17852$ is not divisible by 6 .
(c) 951480 is divisible by both 2 and 3 .
$\therefore 951480$ is divisible by 6 .
(d) 6839452 is divisible by 2 but not by 3 .
$\therefore 6839452$ is not divisible by 6 .
6. (a) Clearly, $(2 \times 7-11)=3$, which is not divisible by 7 .
$\therefore 117$ is not divisible by 7 .
(b) Clearly, $(82-12)=70$, which is divisible by 7 .
$\therefore 826$ is divisible by 7 .
(c) Clearly, $(602-2)=600$, which is not divisible by 7 .
$\therefore 6021$ is not divisible by 7 .
(d) Clearly, $(2536-16)=2520$, which is divisible by 7 .
$\therefore 25368$ is divisible by 7 .
7. (a) In 9364,364 is not divisible by 8 .
$\therefore 9364$ is not divisible by 8 .
(b) In 901674,674 is not divisible by 8 .
$\therefore 901674$ is not divisible by 8 .
(c) In 36792,792 is divisible by 8 .
$\therefore 36792$ is divisible by 8 .
(d) In 1790184,184 is divisible by 8.
$\therefore 1790184$ is divisible by 8 .
8. (a) Sum of digits $=3+3+3+3=12$, which is not divisible by 9 .
$\therefore 3333$ is not divisible by 9 .
(b) Sum of digits $=2+3+5+8=18$, which is divisible by 9 .
$\therefore 2358$ is divisible by 9 .
(c) Sum of digits $=9+8+7+1+2=27$, which is divisible by 9 .
$\therefore 98712$ is divisible by 9 .
(d) Sum of digits $=3+2+6+9+9+9=38$, which is not divisible by 9 .
$\therefore 326999$ is not divisible by 9 .
9. (a) 6870 has 0 in its ones place.
$\therefore 68370$ is divisible by 10 .
(b) 52325 has 5 in its ones place.
$\therefore 52325$ is not divisible by 10 .
(c) 44550 has 0 in its ones place.
$\therefore 44550$ is divisible by 10 .
(d) 43238 has 8 in its ones place.
$\therefore 43238$ is not divisible by 10 .
10. (a) In 7678,

Sum of digits in odd place $=8+6=14$
Sum of digits in even place $=7+7=14$
Difference of the two sums $=14-14=0$
$\therefore 7678$ is divisible by 11 .
(b) In 66311,

Sum of digits in odd place $=1+3+6=10$
Sum of digits in even place $=1+6=7$
Difference of the two sums $=10-7=3$
$\therefore 66311$ is not divisible by 11 .
(c) In 901351,

Sum of digits in odd place $=1+3+0=4$
Sum of digits in even place $=5+1+9=15$
Difference of the two sums $=15-4=11$
$\therefore 901351$ is divisible by 11 .
(d) In 8790322,

Sum of digits in odd place $=2+3+9+8=22$
Sum of digits in even place $=2+0+7=9$
Difference of the two sums $=22-9=13$
$\therefore 8790322$ is not divisible by 11 .
11. (a) If $27 * 4$ is divisible by 3 , then the sum of its digits will be divisible by 3.

$$
\begin{aligned}
\text { Sum of digits } & =2+7+*+4 \\
& =13+*
\end{aligned}
$$

Here, the first multiple of 3 greater than 13 is 15 .
So,

$$
\begin{aligned}
13+* & =15 \\
* & =15-13 \\
* & =2
\end{aligned}
$$

(b) $8 * 711$ is divisible by 3 , then the sum of its digits will be divisible by 3.

$$
\begin{aligned}
\text { Sum of digits } & =8+*+7+1+1 \\
& =17+*
\end{aligned}
$$

Here, the first multiple of 3 greater than 17 is 18 .
So,

$$
\begin{aligned}
17+* & =18 \\
* & =18-17 \\
* & =1
\end{aligned}
$$

(c) If $53 * 46$ is divisible by 3 , then the sum of its digits will be divisible by 3 .

$$
\begin{aligned}
\text { Sum of digits } & =5+3+*+4+6 \\
& =18+*
\end{aligned}
$$

Here, 18 is already a multiple of 3 .
So,

$$
\begin{aligned}
18+* & =18 \\
* & =18-18 \\
* & =0
\end{aligned}
$$

(d) $6 * 1054$ is divisible by 3 , then the sum of its digits will be divisible by 3 .

$$
\begin{aligned}
\text { Sum of digits } & =6+*+1+0+5+4 \\
& =16+*
\end{aligned}
$$

Here, the first multiple of 3 greater than 16 is 18 .
So,

$$
\begin{aligned}
16+* & =18 \\
* & =18-16 \\
* & =2
\end{aligned}
$$

12. (a) If $65 * 5$ is divisible by 9 , then the sum of its digits will be divisible by 9.

$$
\begin{aligned}
\text { Sum of digits } & =6+5+*+5 \\
& =16+*
\end{aligned}
$$

Here, the first multiple of 9 greater than 16 is 18 .
So,

$$
\begin{aligned}
16+* & =18 \\
* & =18-16 \\
* & =2
\end{aligned}
$$

(b) If $6702 *$ is divisible by 9 , then the sum of its digits will be divisible by 9 .

$$
\begin{aligned}
\text { Sum of digits } & =6+7+0+2+* \\
& =15+*
\end{aligned}
$$

Here, the first multiple of 9 , greater than 15 is 18 .

So,

$$
\begin{aligned}
15+* & =18 \\
* & =18-15 \\
* & =3
\end{aligned}
$$

(c) If $2 * 135$ is divisible by 9 , then the sum of digits of its will be divisible by 9 .

$$
\begin{aligned}
\text { Sum of digits } & =2+*+1+3+5 \\
& =11+*
\end{aligned}
$$

Here, the first multiple of 9 greater than 11 is 18 .
So,

$$
\begin{aligned}
11+* & =18 \\
* & =18-11 \\
* & =7
\end{aligned}
$$

(d) If $6678 * 1$ is divisible by 9 , then the sum of its digits will be divisible by 9 .

$$
\begin{aligned}
\text { Sum of digits } & =6+6+7+8+*+1 \\
& =28+*
\end{aligned}
$$

Here, the first multiple of 9 greater than 28 is 36 .
So,

$$
\begin{aligned}
28+* & =36 \\
* & =36-28 \\
* & =8
\end{aligned}
$$

13. (a) 103 has factors: 1 and 103 only.
$\therefore 103$ is a prime number.
(b) 137 has factors : 1 and 137 only.
$\therefore 137$ is a prime number.
(c) 161 has factors: 1, 7, 23 and 161.
$\therefore 161$ is not a prime number.
(d) 179 has factors : 1 and 179 only.
$\therefore 179$ is a prime number.
14. (a) 6
(b) 12
(c) 24
(d) 12
15. (a) F
(b) T
(c) F
(d) T

EXERCISE 2C

1. | 2 | 28 |
| ---: | ---: |
| 2 | 14 |
| 7 | 7 |
| | 1 |

$$
\begin{aligned}
\therefore \quad 28 & =2 \times 2 \times 7 \\
& =2^{2} \times 7
\end{aligned}
$$

2. | 2 | 40 |
| ---: | ---: |
| 2 | 20 |
| 2 | 10 |
| 5 | 5 |
| | 1 |

$$
\begin{aligned}
\therefore \quad 40 & =2 \times 2 \times 2 \times 5 \\
& =2^{3} \times 5
\end{aligned}
$$

3. | 5 | 85 |
| ---: | ---: |
| 17 | 17 |
| | 1 |

$\therefore \quad 85=5 \times 17$

4. | 2 | 96 |
| :--- | :--- |
| 2 | 48 |
| 2 | 24 |

2	48
2	24
2	12
2	6
3	3
	1

$=2^{5} \times 3$

5. | 2 | 120 |
| ---: | ---: |
| 2 | 60 |
| 2 | 30 |
| 3 | 15 |
| 5 | 5 |
| | 1 |

$$
\begin{aligned}
\therefore \quad 120 & =2 \times 2 \times 2 \times 3 \times 5 \\
& =2^{3} \times 3 \times 5
\end{aligned}
$$

6. | 2 | 140 |
| ---: | ---: |
| 2 | 70 |
| 5 | 35 |
| 7 | 7 |
| | 1 |

$$
\begin{aligned}
\therefore \quad 140 & =2 \times 2 \times 5 \times 7 \\
& =2^{2} \times 5 \times 7
\end{aligned}
$$

7.

3	375
5	125
5	25
5	5
	1

$$
\begin{aligned}
\therefore \quad 375 & =3 \times 5 \times 5 \times 5 \\
& =3 \times 5^{3}
\end{aligned}
$$

9.

5	625		
5	125		
5	25		
5	5		
	1		625
	$=5 \times 5 \times 5 \times 5$		
	$=5^{4}$		

11.

2	1024
2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

12.

5	3125
5	625
5	125
5	25
5	5
	1

$$
\begin{aligned}
\therefore 3125 & =5 \times 5 \times 5 \times 5 \times 5 \\
& =5^{5}
\end{aligned}
$$

$\therefore 1024=2 \times 2 \times 2$

$$
=2^{10}
$$

13. | 3 | 4335 |
| ---: | ---: |
| 5 | 1445 |
| 17 | 289 |
| 17 | 17 |
| | 1 |

$$
\begin{aligned}
\therefore 4335 & =3 \times 5 \times 17 \times 17 \\
& =3 \times 5 \times 17^{2}
\end{aligned}
$$

15.

3	2907
3	969
17	323
19	19
	1

$$
\begin{aligned}
\therefore 2907 & =3 \times 3 \times 17 \times 19 \\
& =3^{2} \times 17 \times 19
\end{aligned}
$$

17.

3	1323
3	441
3	147
7	49
7	7
	1

$$
\begin{aligned}
\therefore 1323 & =3 \times 3 \times 3 \times 7 \times 7 \\
& =3^{3} \times 7^{2}
\end{aligned}
$$

19.

2	8712
2	4356
2	2178
3	1089
3	363
11	121
11	11
	1

$$
\begin{aligned}
\therefore 8712 & =2 \times 2 \times 2 \times 3 \times 3 \times 11 \times 11 \\
& =2^{3} \times 3^{2} \times 11^{2}
\end{aligned}
$$

14. | 3 | 4641 |
| ---: | ---: |
| 7 | 1547 |
| 13 | 221 |
| 17 | 17 |
| | 1 |

$\therefore 4641=3 \times 7 \times 13 \times 17$
16.

2	8712
2	4356
2	2178
3	1089
3	363
11	121
11	11
	1

$\therefore 8712=2 \times 2 \times 2 \times 3 \times 3 \times 11 \times 11$

$$
=2^{3} \times 3^{2} \times 11^{2}
$$

18. | 7 | 9317 |
| ---: | ---: |
| 11 | 1331 |
| 11 | 121 |
| 11 | 11 |
| | 1 |

$\therefore 9317=7 \times 11 \times 11 \times 11$ $=7 \times 11^{3}$

20. | 2 | 17424 |
| ---: | ---: |
| 2 | 8712 |
| 2 | 4356 |
| 2 | 2178 |
| 3 | 1089 |
| 3 | 363 |
| 11 | 121 |
| 11 | 11 |
| | 1 |

$\therefore \quad 17424=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times$
11×11

$$
=2^{4} \times 3^{2} \times 11^{2}
$$

EXERCISE 2D

1. (a)
$\left.\begin{array}{l|rl|r}5 & 25 \\ \hline 5 & 5 \\ \hline & 1 & & 3\end{array}\right)$
$\therefore \quad 25=5 \times 5=5^{2}$
$15=3 \times 5$

(b) | 2 | 16 |
| ---: | ---: |
| 2 | 8 |
| 2 | 4 |
| 2 | 2 |
| | 1 |

$\therefore \mathrm{HCF}=5$
$16=2 \times 2 \times 2 \times 2=2^{4}$
$56=2 \times 2 \times 2 \times 7=2^{3} \times 7$
$\therefore \mathrm{HCF}=2^{3}=8$
(c)

2	24
2	12
2	6
3	3
	1

(d)

2	16
2	8
2	4
2	2
	1

2	18
3	9
3	3
	1

$$
\begin{aligned}
& 24=2 \times 2 \times 2 \times 3=2^{3} \times 3 \quad 16=2 \times 2 \times 2 \times 2=2^{4} \\
& 42=2 \times 3 \times 87=2 \times 3 \times 3=2 \times 3^{2}
\end{aligned}
$$

$\therefore \mathrm{HCF}=2 \times 3=6 \quad \therefore \mathrm{HCF}=2$
(e)

3	33			
11	11			
	1	\quad	3	99
---:	---:			
3	33			
11	11			
	1			

(f)

5	25
5	5
	1

3	45
3	15
5	5
	1

$$
\begin{aligned}
& 33=3 \times 11 \\
& 99=3 \times 3 \times 11=3^{2} \times 11
\end{aligned}
$$

$$
\begin{aligned}
& 25=5 \times 5=5^{2} \\
& 45=3 \times 3 \times 5=3^{2} \times 5
\end{aligned}
$$

$$
\therefore \mathrm{HCF}=3 \times 11=33
$$

$$
\therefore \mathrm{HCF}=5
$$

(g)

2	18				
3	9	3	45		2
	15				
3	3	5	5		
	1		1		
2	36				
3	9				
3	3				

(h) | 3 | 21 |
| ---: | ---: |
| 7 | 7 |
| | 1 |

2	42
3	21
7	7
	1

2	70
5	35
7	7
	1

$$
\begin{aligned}
\therefore \quad 18 & =2 \times 3 \times 3=2 \times 3^{2} \\
45 & =3 \times 3 \times 5=3^{2} \times 5 \\
72 & =2 \times 2 \times 2 \times 3 \times 3 \\
& =2^{3} \times 3^{2}
\end{aligned}
$$

$$
21=3 \times 7
$$

$$
42=2 \times 3 \times 7
$$

$$
70=2 \times 5 \times 7
$$

$$
\therefore \mathrm{HCF}=7
$$

$$
\therefore \mathrm{HCF}=3^{2}=9
$$

2. (a) $6 0 \longdiv { 8 0 (1 }$

$$
\frac{-60}{20) 60}
$$

$$
\frac{-60}{\times}
$$

(b) $1 4 0 \longdiv { 1 6 8 (1 }$

$$
\frac{-140}{28) 140(5}
$$

$$
\frac{-140}{\times}
$$

$\therefore \mathrm{HCF}=20$
$\therefore \mathrm{HCF}=28$
(c) $7 2 \longdiv { 8 4 (1 }$

$$
\begin{aligned}
& -72 \\
& \hline \text { 12) } 72(6 \\
& \frac{-72}{\times}
\end{aligned}
$$

$$
\therefore \mathrm{HCF}=12
$$

(d) $6 0 \longdiv { 9 6 (1 }$
$\frac{-60}{36) 60(1}$
$\frac{-36}{24) 36(1}$

$$
\frac{-24}{12) 24(2}
$$

$1 2 \longdiv { 1 5 0 (1 2 }$
$\begin{array}{r}-12 \\ \hline 30\end{array}$
$\frac{-24}{6) 12(2}$
-24
$\begin{array}{r}-12 \\ \times \\ \hline\end{array}$
$\therefore \mathrm{HCF}=6$
(e) $4 9 \longdiv { 9 1 (1 }$
$7 \longdiv { 1 1 2 (1 6 }$
$\frac{-49}{42) 49(1}$

-7
42

$\frac{-42}{7) 42(6}$
$\begin{array}{r}-42 \\ \times \\ \hline\end{array}$

$$
\frac{-42}{\times}
$$

$\therefore \mathrm{HCF}=7$
(f) $7 5 \longdiv { 1 0 0 (1 }$
$2 5 \longdiv { 1 4 0 (5 }$
$\frac{-75}{25) 75(3} \quad \frac{-125}{15) 25(1}$

$$
\frac{-75}{\times}
$$

$$
\frac{-15}{10) 15(1}
$$

$$
\frac{-10}{5) 10(2}
$$

$$
\therefore \mathrm{HCF}=5
$$

$$
\frac{-10}{\times}
$$

(g) $7 2 \longdiv { 1 4 4 (2 }$ $\begin{array}{r}\frac{-144}{\times} \\ \hline\end{array}$

$$
\begin{aligned}
& 7 2 \longdiv { 2 5 2 (3 } \\
& \frac{-216}{36) 72(2}
\end{aligned}
$$

$$
\frac{-72}{\times}
$$

$\therefore \mathrm{HCF}=36$
(h) $1 4 4 \longdiv { 1 8 0 (1 }$

-144
36$) 144(4$
$\frac{-144}{x}$

$\therefore \mathrm{HCF}=12$
3. (a)

59	59			
	1	\quad	97	97
:---	:---			

$59=1 \times 59$
$97=1 \times 97$
\therefore HCF of 59 and 97 is 1 .

So, these are co-primes.
(b)

5	385
7	77
11	11
	1

3	621
3	207
3	69
23	23
	1

$385=5 \times 7 \times 11$
$621=3 \times 3 \times 3 \times 23$
\therefore There is no common factor of 385 and 621.
So, these are co-primes.
(c)

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$512=2 \times 2 \times 2$
$945=3 \times 3 \times 3 \times 5 \times 7$
\therefore There is no common factor of 512 and 945 .
So, these are co-primes.

3	945
3	315
3	105
5	35
7	7
	1

(e)
$432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$
\therefore There is no common factor of 343 and 432.

	343	2	432
7	49	2	216
7	7	2	108
	1	2	54
		3	27
		3	9
		3	3
			1

$343=7 \times 7 \times 7$

7	343
7	49
7	7
	1

(d)

7	161
23	23
	1

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

$$
161=7 \times 23
$$

$192=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$
\therefore There is no common factor of 161 and 192.
So, these are co-primes.
(f)

7	847
11	121
11	11
	1

2	1014
3	507
13	169
13	13
	1

$847=7 \times 11 \times 11$
$1014=2 \times 3 \times 13 \times 13$
\therefore There is no common factor
of 847 and 1014 .
So, these are co-primes.

So, these are co-primes.
4. Clearly, we must find the greatest number which devides (445-4), (572-5) and (699-6) exactly.
So, required number $=$ HCF of 441,567 and 693.

$$
\begin{aligned}
& 4 4 1 \longdiv { 5 6 7 (1 } \\
& \begin{array}{l}
-441 \\
\hline 126) 441(3 \\
\frac{-378}{63) 126(2} \\
\frac{-126}{\times}
\end{array}
\end{aligned}
$$

$$
6 3 \longdiv { 6 9 3 (1 1 }
$$

$$
\frac{-63}{63}
$$

$$
\frac{-63}{\times}
$$

Hence, the required number $=63$.
5. Clearly, we must find the greatest number which devides (615-6) and (963-6) exactly.
So, required number $=$ HCF of 609 and 957.

$$
\begin{aligned}
& 6 0 9 \longdiv { 9 5 7 (1 } \\
& \begin{array}{l}
-609 \\
348) 609(1
\end{array} \\
& \frac{-348}{261) 348(1} \\
& \frac{-261}{87) 261(3} \\
& \begin{array}{l}
\frac{-261}{\times}
\end{array}
\end{aligned}
$$

Hence, required number $=87$.
6. Clearly, we must find the greatest number which devides (2011-9) and (2623-5) exactly.
So, required number $=$ HCF of 2002 and 2618.

$$
\begin{aligned}
& 2 0 0 2 \longdiv { 2 6 1 8 } (1 \\
& -2002 \\
& 616) 2002(3 \\
& \frac{-1848}{154) 616(4} \\
& \frac{-616}{x}
\end{aligned}
$$

Hence, required number $=154$.
7. (a) $\frac{161}{207}$

For, reducing the given fraction to the lowest terms, we divide its numerator and the denominator by their HCF.
Now, we find the HCF of 161 and 207 as under.

$$
\begin{aligned}
& 1 6 1 \longdiv { 2 0 7 (1 } \\
& \begin{array}{l}
-161 \\
46) 161(3
\end{array} \\
& \frac{-138}{23) 46(2} \\
& \frac{-46}{x}
\end{aligned}
$$

Hence, HCF of 161 and 207 is 23.
Now, dividing the numerator and the denominator of the given fraction by 23 , we get

$$
\frac{161 \div 23}{207 \div 23}=\frac{7}{9}
$$

(b) $\frac{296}{481}$

For, reducing the given fraction to the lowest terms, we divide its numerator and the denominator by their HCF.
Now, we find the HCF of 296 and 481 as under.

$$
\begin{aligned}
& 2 9 6 \longdiv { 4 8 1 (1 } \\
& \text { - } 296 \\
& \text { 185)296(1 } \\
& \text { - } 185 \\
& \text { 111) } 185(1 \\
& \text { - } 111 \\
& \text { 74) 111(1 } \\
& \begin{array}{l}
-74 \\
\hline 37) 74(2
\end{array} \\
& \begin{array}{r}
-74 \\
\times \\
\hline
\end{array}
\end{aligned}
$$

Hence, HCF of 296 and 481 is 37.
Now, dividing the numerator and the denominator of the given fraction by 37.

$$
\frac{296 \div 37}{481 \div 37}=\frac{8}{13}
$$

(c) $\frac{517}{799}$

For, reducing the given fraction to the lowest terms, we divide its numerator and the denominator by their HCF.
Now, we find the HCF of 517 and 799 as under.

$$
\begin{aligned}
& 5 1 7 \longdiv { 7 9 9 (1 } \\
& \begin{array}{l}
-517 \\
282) 517(1 \\
\frac{-282}{235) 282(1} \\
\\
\frac{-235}{47) 235(5} \\
\\
\frac{-235}{\times}
\end{array}
\end{aligned}
$$

Hence, HCF of 517 and 799 is 47.
Now, dividing the numerator and the denominator of the given fraction by 47, we get

$$
\frac{517 \div 47}{799 \div 47}=\frac{11}{17}
$$

8. The capacity of the container which can measure the milk of given containers $=$ HCF of $403 l, 434 l$ and $465 l$.
First we find the HCF of 403 and 434.

$$
\begin{gathered}
4 0 3 \longdiv { 4 3 4 } (1 \\
-403 \\
\hline 31) 403(13 \\
\frac{-31}{93} \\
\frac{-93}{\times}
\end{gathered}
$$

Hence, HCF of 403 and $434=31$.
Now, we find the HCF of 31 and 465.

$$
\begin{gathered}
3 1 \longdiv { 4 6 5 } (1 5 \\
\frac{-31}{155} \\
\frac{-155}{\times} \\
\hline
\end{gathered}
$$

Hence, HCF of 31 and $465=31$.
Thus, the HCF of 403,434 and $465=31$
Hence, the capacity of container $=31 l$.
9. Least possible number of tiles $=\mathrm{HCF}$ of 18 m 72 cm and 13 m 20 cm .
$18 \mathrm{~m} 72 \mathrm{~cm}=18 \times 100 \mathrm{~cm}+72 \mathrm{~cm}=1800 \mathrm{~cm}+72 \mathrm{~cm}=1872 \mathrm{~cm}$
$13 \mathrm{~m} 20 \mathrm{~cm}=13 \times 100 \mathrm{~cm}+20 \mathrm{~cm}=1300 \mathrm{~cm}+20 \mathrm{~cm}=1320 \mathrm{~cm}$
Now, we find HCF of 1872 cm and 1320 cm .

$$
\begin{aligned}
& 1320 \begin{array}{l}
1857(1 \\
-1320 \\
552) 1320(2
\end{array} \\
& \frac{-1104}{216) 552(2} \\
& \frac{-432}{120) 216(1} \\
& \frac{-120}{96) 120(1} \\
& \frac{-96}{24) 96(4} \\
& \frac{-96}{\times}
\end{aligned}
$$

Hence, HCF of 1320 and $1872=24$.
\therefore Possible number of tiles $=\frac{\text { Area of rectangular courtyard }}{\text { Area of square covering maximum area }}$

$$
=\frac{1872 \times 1320}{24 \times 24} \text { tiles }=4290 \text { tiles }
$$

EXERCISE 2E

1. (a)

3	15
5	5
	1

2	20
2	10
5	5
	1

(b)

2	18
3	9
3	3
	1

2	30
3	15
5	5
	1

$15=3 \times 5$
$18=2 \times 3 \times 3=2 \times 3^{2}$
$20=2 \times 2 \times 5=2^{2} \times 5$
$30=2 \times 3 \times 5$
$\therefore \mathrm{LCM}=2^{2} \times 3 \times 5=60$
$\therefore \mathrm{LCM}=2 \times 3^{2} \times 5=90$

(c) | 7 | 7 |
| :--- | :--- |
| | 1 |

(d) | 2 | 28 |
| ---: | ---: |
| 2 | 14 |
| 7 | 7 |
| | 1 |

2	70
5	35
7	7
	1

$$
7=1 \times 7
$$

$14=2 \times 7$

$$
28=2 \times 2 \times 7=2^{2} \times 7
$$

$$
\therefore \quad \mathrm{LCM}=2^{2} \times 7=28
$$

$$
\begin{aligned}
& 28=2 \times 2 \times 7=2^{2} \times 7 \\
& 70=2 \times 5 \times 7 \\
& 84=2 \times 2 \times 3 \times 7=2^{2} \times 3 \times 7 \\
& \therefore \quad \text { LCM }=2^{2} \times 3 \times 5 \times 7=420
\end{aligned}
$$

(e)

	182	36		60
3	9	18	2	30
3		9	3	15
	3	3	5	5

2	72
2	36
2	18
3	9
3	3
	1

(f) | 2 | 20 |
| :--- | :--- |
| 2 | 10 |
| 5 | 5 |
| | 1 |

5	25
5	5
	1

2	30
3	15
5	5
	1

2	50
5	25
5	5
	1

$20=2 \times 2 \times 5=2^{2} \times 5$
$18=2 \times 3 \times 3=2 \times 3^{2}$
$36=2 \times 2 \times 3 \times 3=2^{2} \times 3^{2}$
$60=2 \times 2 \times 3 \times 5=2^{2} \times 3 \times 5$
$72=2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2}$
$\therefore \mathrm{LCM}=2^{3} \times 3^{2} \times 5=360$
(g)

2	48
2	24
2	12
2	6
3	3
	1

2	56
2	28
2	14
7	7
	1

3	105			
5	35			
7	7			
	1	\quad	3	225
:---:	:---:			
3	75			
5	25			
	1			

3	105			
5	35			
7	7			
	1	\quad	3	225
:---:	:---:			
3	75			
5	25			

$48=2 \times 2 \times 2 \times 2 \times 3=2^{4} \times 3$
$56=2 \times 2 \times 2 \times 7=2^{3} \times 7$
$105=3 \times 5 \times 7$
$225=3 \times 3 \times 5 \times 5=3^{2} \times 5^{2}$
\therefore LCM $=2^{4} \times 3^{2} \times 5^{2} \times 7=25200$
(h)

2	8
2	4
2	2
	1

2	12
2	6
3	3
	1

2	20
2	10
5	5
	1

2	30
3	15
5	5
	1

2	80
2	40
2	20
2	10
5	5
	1

$8=2 \times 2 \times 2=2^{3}$
$25=5 \times 5=5^{2}$
$30=2 \times 3 \times 5$
$50=2 \times 5 \times 5=2 \times 5^{2}$
$\therefore \quad \mathrm{LCM}=2^{2} \times 3 \times 5^{2}=300$
$12=2 \times 2 \times 3=2^{2} \times 3$
$20=2 \times 2 \times 5=2^{2} \times 5$
$30=2 \times 3 \times 5$
$80=2 \times 2 \times 2 \times 2 \times 5=2^{4} \times 5$
$\therefore \mathrm{LCM}=2^{4} \times 3 \times 5=240$
(i)

3	9
3	3
	1

2	12
2	6
3	3
	1

$$
\begin{aligned}
& 9=3 \times 3=3^{2} \\
& 12=2 \times 2 \times 3=2^{2} \times 3
\end{aligned}
$$

2	18
3	9
3	3
	1

2	24
2	12
2	6
3	3
	1

3	27
3	9
3	3
	1

$18=2 \times 3 \times 3=2 \times 3^{2}$
$24=2 \times 2 \times 2 \times 3=2^{3} \times 3$
$27=3 \times 3 \times 3=3^{3}$
$\therefore \mathrm{LCM}=2^{3} \times 3^{3}=216$
(j)

2	140
2	70
5	35
7	7
	1

$$
35=5 \times 7
$$

2	280
2	140
2	70
5	35
7	7
	1

$105=3 \times 5 \times 7$
$140=2 \times 2 \times 5 \times 7=2^{2} \times 5 \times 7$
$280=2 \times 2 \times 2 \times 5 \times 7=2^{3} \times 5 \times 7$
\therefore LCM $=2^{3} \times 3 \times 5 \times 7=840$
2. (a) Clearly,

HCF of 117 and $221=13$
LCM of 117 and $221=13 \times 3 \times 3 \times 17$

$$
=1989
$$

3	117,	221
3	39,	221
13	13,	221
17	1,	17
	1,	1

(b) Clearly,

HCF of 234 and $572=2 \times 13$

$$
=26
$$

LCM of 234 and $572=2 \times 2 \times 3 \times 3 \times 11 \times 13$

$$
=5148
$$

2	234,572	
2	117,286	
3	117,143	
3	39,143	
11	13,	143
13	13,	13
	$1, \quad 1$	

(c) Clearly,

HCF of 693 and $1078=7 \times 11$

$$
=77
$$

LCM of 693 and $1078=2 \times 3 \times 3 \times 7 \times 7 \times 11$

$$
=9702
$$

(d) Clearly,

HCF of 145 and $232=29$
LCM of 145 and $232=2 \times 2 \times 2 \times 5 \times 29$

$$
=1160
$$

2	693,	1078
3	693,	539
3	231,	539
7	77,	539
7	11,	77
11	11,	11
	1,	1

2	145,	232
2	145,	116
2	145,	58
5	145,	29
29	29,	29
	1,	1

3. (a) Product of numbers $=87 \times 145=12615$

Now, we find LCM and HCF of the given numbers,
HCF of 87 and $145=29$
LCM of 87 and $145=3 \times 5 \times 29$

$$
=435
$$

Now, $\mathrm{HCF} \times \mathrm{LCM}=29 \times 435$

3	87,	145
5	29,	145
29	29,	29
	1,	1

$$
\begin{aligned}
& =12625 \\
& =\text { Product of numbers }
\end{aligned}
$$

Verified.
(b) Product of numbers $=186 \times 403=74958$

Now, we find HCF and LCM of given numbers,
HCF of 186 and $403=31$
LCM of 186 and $403=2 \times 3 \times 13 \times 31$

$$
=2418
$$

Now, $\quad \mathrm{HCF} \times \mathrm{LCM}=31 \times 2418$
$=74958$
= Product of numbers

2	186,	403
3	93,	403
13	31,	403
31	31,	31
	1,	1

Verified.
(c) Product of numbers $=490 \times 1155=565950$

Now, we find LCM and HCF of the given numbers, HCF of 490 and $1155=5 \times 7=35$
LCM of 490 and $1155=2 \times 3 \times 5 \times 7 \times 7 \times 11$

$$
=16170
$$

Now, $\mathrm{HCF} \times \mathrm{LCM}=35 \times 16170$
$=565950$
= Product of numbers
Verified.

2	490,	1155
3	245,	1155
5	245,	385
7	49,	77
7	7,	11
11	1,	11
	1,	1

4. $\mathrm{HCF}=131$

LCM $=8253$
One number $=917$
Other number $=\frac{\mathrm{HCF} \times \mathrm{LCM}}{\text { One number }}=\frac{131 \times 8253}{917}=1179$
5. $\mathrm{HCF}=145$

LCM = 2175
One number $=725$
Other number $=\frac{\mathrm{HCF} \times \mathrm{LCM}}{\text { One number }}$

$$
=\frac{145 \times 2175}{725}=435
$$

6. Product of two numbers $=2160$

Their $\mathrm{HCF}=12$
LCM $=\frac{\text { Product of numbers }}{\mathrm{HCF}}=\frac{2160}{12}=180$
7. Product of two numbers $=2560$

Their HCF $=320$
HCF $=\frac{\text { Product of numbers }}{\text { LCM }}=\frac{2560}{320}=8$
8. First, we find the LCM of 25,40 and 60 .

LCM of 25,40 and $60=2 \times 2 \times 2 \times 3 \times 5 \times 5$

$$
=600
$$

Hence, required number $=600+9$

$$
=609
$$

2	25,	40,	60
2	25,	20,	30
2	25,	10,	15
3	25,	5,	15
5	25,	5,	5
5	5,	1,	1
	1,	1,	1

9. First, we find the LCM of $9,12,15,18$ and 24.
LCM of $9,12,15,18$ and 24

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 3 \times 3 \times 5 \\
& =360
\end{aligned}
$$

Hence, required number $=360$

2	9,	12,	15,	18,	24
2	9,	6,	15,	9,	12
2	9,	3,	15,	9,	6
3	9,	3,	15,	9,	3
3	3,	1,	5,	3,	1
5	1,	1,	5,	1,	1
	1,	1,	1,	1,	1

Greatest 5 -digit number $=99999$
Greatest 5-digit number divisible by 360

$$
\begin{aligned}
& =99999-279 \\
& =99720
\end{aligned}
$$

$3 6 0 \longdiv { 9 9 9 9 9 (2 7 7 }$
$\frac{-720}{2799}$
$\frac{-2520}{2799}$
$\frac{-2520}{279}$

10. First, we find the LCM of $16,18,24$ and 30 . LCM of $16,18,24$ and 30

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \\
& =720
\end{aligned}
$$

Now, smallest 5-digit number $=10000$

2	18,			18,
2	8,	9,	12,	15
2	4,	9,	6,	15
2	2,	9,	3,	15
3	1,	9,	3,	15
3	1,	3,	1,	5
5	1,	1,	1,	5
	1,	1,	1,	1

$$
\begin{gathered}
7 2 0 \longdiv { 1 0 0 0 0 } (1 3 \\
\frac{-720}{2800} \\
\frac{-2160}{640}
\end{gathered}
$$

So, the required number $=720 \times(13+1)$

$$
\begin{aligned}
& =720 \times 14 \\
& =10080
\end{aligned}
$$

11. Length of first rod $=45 \mathrm{~cm}$

Length of second rod $=50 \mathrm{~cm}$
Length of third rod $=75 \mathrm{~cm}$
Least length of rope $=\mathrm{LCM}$ of $45 \mathrm{~cm}, 50 \mathrm{~cm}$ and
75 cm .
We find the LCM of 45, 50 and 75 as under.
LCM of 45,50 and $75=2 \times 3 \times 3 \times 5 \times 5$

2	$45,50,75$	
3	45,	25,75
3	15,	25,
5	5,	25,
5	1,	5,
	1,	1,

$$
=450
$$

Hence, the least least length of rope $=450 \mathrm{~cm}$ or 4 m 50 cm
12. First we will find LCM of 9,12 and 15 .

LCM of 9,12 and $15=2 \times 2 \times 3 \times 3 \times 5$

$$
=180
$$

Hence, the bells will start tolling together after 180 minutes or 3 hours.

2	9,	12,
2	9,	15
3	9,	15
3	3,	15
5	1,	1,
	1,	5

13. First we find LCM of 48,72 and 108 .

LCM of 48,72 and $108=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$

$$
=432
$$

$$
432 \text { seconds }=\frac{432}{60} \text { minutes }
$$

$=7$ minutes 12 seconds Hence, the traffic lights will start changing simultaneously after 7 minutes and 12 seconds.

2	48,	72,	108
2	24,	36,	54
2	12,	18,	27
2	6,	9,	27
3	3,	9,	27
3	1,	3,	9
3	1,	1,	3
	1,	1,	1

EXERCISE 2F

1. (c)
2. (d)
3. (a)
4. (b)
5. (a)
6. (c)
7. (c)
8. (d)
9. (c)
10. (b)
11. (c)
12. $1 4 4 \longdiv { 1 9 8 (1 }$

$$
\begin{aligned}
& \frac{-144}{54) 144(2} \\
& \frac{-108}{36) 54(1} \\
& \frac{-36}{18) 36(2} \\
& \frac{-36}{\times}
\end{aligned}
$$

$\mathrm{HCF}=18$
\therefore (c) is correct.
14. $2 8 9 \longdiv { 3 9 1 } 1$

$$
\begin{aligned}
& \frac{-289}{102) 289(2} \\
& \frac{-204}{85) 102(1} \\
& \frac{-85}{17) 85(5} \\
& \frac{-85}{\times}
\end{aligned}
$$

$\mathrm{HCF}=17$
$\therefore \frac{289 \div 17}{391 \div 17}=\frac{17}{23}$
\therefore (d) is correct.
16. LCM of $12,15,20$ and 27
$=2 \times 2 \times 3 \times 3 \times 3 \times 5$
$=540$

2	12,	15,	20,
	6,	27	
	3,	15,	5,
	1,	5,	5,
	1,	5,	5,
	1,	5,	5,
	1,	1,	1,

\therefore (d) is correct.
13. $4 8 \longdiv { 9 6 (2 }$

$$
\frac{-96}{x}
$$

\therefore (b) is correct.
15. LCM of $24,36,40$
$=2 \times 2 \times 2 \times 3 \times 3 \times 5$
$=360$

2	24,	36,	40
2	12,	18,	20
2	6,	9,	10
3	3,	9,	5
3	1,	3,	5
5	1,	1,	5
	1,	1,	1

\therefore (c) is correct.
17. Required number will be the HCF of ($134-2$) and ($167-2$)

$$
\begin{gathered}
1 3 2 \longdiv { 1 6 5 } (1 \\
\frac{-132}{33) 132(4} \\
\frac{-132}{x}
\end{gathered}
$$

$\mathrm{HCF}=33$
\therefore (d) is correct.
18. LCM of $15,20,24,32$ and 36

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \\
& =1440
\end{aligned}
$$

\therefore (c) is correct.

2	15,	20,	24,	32,
2	15,	10,	12,	16,
18				
2	15,	5,	6,	8,
2	15,	5,	3,	4,
2	15,	5,	3,	2,
3	15,	5,	3,	1,
3	5,	5,	1,	1,
5	5,	5,	1,	1,
	1,	1,	1,	1,

19. $\mathrm{LCM}=\frac{\text { Product of numbers }}{\mathrm{HCF}}=\frac{2160}{12}=180$
\therefore (c) is correct.
20. Other number $=\frac{\mathrm{HCF} \times \mathrm{LCM}}{\text { One number }}=\frac{145 \times 2175}{725}=435$
\therefore (b) is correct.

HOTS

- LCM of 2 and $3=6$

LCM of 3 and $4=12$
Product of both LCMs $=6 \times 12$

$$
=72
$$

$$
\mathrm{LCM}=2 \times 3
$$

Number $=72-68=4$

$=6$
$\mathrm{LCM}=2 \times 2 \times 3$
$=12$

Hence, the required number is 4 .

VALUE BASED

- HCF of 228 and $285=57$
$\begin{aligned} \text { Number of apples in each box } & =228 \div 57 \\ & =4\end{aligned}$

$$
\begin{aligned}
& 2 2 8 \longdiv { 2 8 5 (1 } \\
& -228 \\
& 57) 228(4 \\
& \frac{-228}{\times}
\end{aligned}
$$

Hence, 57 boxes are required and each box contained 4 apples and 5 oranges.

Chapter 3 Whole Numbers

EXERCISE 3A

1. The successor of $20999=20999+1=21000$

Successor of $21000=21000+1=21001$
Successor of $21001=21001+2=21002$
Hence, next three whole numbers after 20999 are 21000, 21001, 21002.
2. The predecessor of $550001=550001-1=550000$

Predecessor of $550000=550000-1=549999$
Predecessor of $549999=549999-1=549998$
3. Number of whole numbers between 1005 and $7512=7512-1005-1$ $=6506$
4. Smallest whole number $=0$
5. (a) Successor of $2099=2099+1=2100$
(b) Successor of $32000=32000+1=32001$
(c) Successor of $91469=91469+1=91470$
(d) Successor of $504351=504351+1=504352$
(e) Successor of $253524=253524+1=253525$
(f) Successor of $100000=100000+1=100001$
(g) Successor of $2481999=2481999+1=2482000$
(h) Successor of $8989899=8989899+1=8989900$
6. (a) Predecessor of $111=111-1=110$
(b) Predecessor of $19900=19900-1=19899$
(c) Predecessor of $20099=20099-1=20098$
(d) Predecessor of $320000=320000-1=319999$
(e) Predecessor of $91469=91469-1=91468$
(f) Predecessor of 504351 $=504351-1=504350$
(g) Predecessor of $235324=235324-1=235323$
(h) Predecessor of $1000000=1000000-1=999999$
7. The precedessor of $7510001=7510001-1=7510000$

$$
\begin{aligned}
& \text { precedessor of } 7510000=7510000-1=7509999 \\
& \text { precedessor of } 7509999=7509999-1=7509998
\end{aligned}
$$

8. (a) F
(b) T
(c) F
(d) T
(e) F
(f) T
(g) F
(h) T
(i) F
(j) F
(k) F
(1) T

EXERCISE 3B

1. (a) $263+567=567+263$
(b) $468+6002=6002+468$
(c) $4691+\mathbf{4 8 9}=489+4691$
(d) $6047+0=\mathbf{6 0 4 7}$
(e) $35105+(475+997)=475+(35105+997)$
2. (a) $16509+491=17000$
(b) $2359+641=3000$
$491+16509=17000$ $641+2359=3000$
$\therefore 16509+491=491+16509$ $\therefore 2359+641=641+2359$
(c) $19753+3647=23400$

$$
3647+19753=23400
$$

$$
\therefore 19753+3647=3647+19753
$$

3. $(2657+387)+2478=3044+2478=5522$
$2657+(387+2478)=2657+2865=5522$
Yes, these two sums are equal.
Property name \rightarrow Associative property of addition.
4. (a) $953+707+647=(953+707)+647$

$$
\begin{aligned}
& =1660+647 \\
& =2307
\end{aligned}
$$

(b) $1983+647+217+353=(1983+217)+(647+353)$

$$
\begin{aligned}
& =2200+1000 \\
& =3200
\end{aligned}
$$

(c) $3259+10001+2641+9999=(3259+2641)+(10001+9999)$

$$
\begin{aligned}
& =5900+20000 \\
& =25900
\end{aligned}
$$

(d) $15409+278+691+422=(15409+691)+(278+422)$

$$
\begin{aligned}
& =16100+700 \\
& =16800
\end{aligned}
$$

(e) $2+3+4+5+45+46+47+48$

$$
\begin{aligned}
& =(2+48)+(3+47)+(4+46)+(5+45) \\
& =50+50+50+50 \\
& =200
\end{aligned}
$$

(f) $1+2+3+4+96+97+98+99$

$$
\begin{aligned}
& =(1+99)+(2+98)+(3+97)+(4+96) \\
& =100+100+100+100 \\
& =400
\end{aligned}
$$

5. (a) $10578+99999$
(b) $6784+9999$
$=10578+(100000-1)$ $=6784+(10000-1)$
$=(10578+100000)-1$
$=110578-1$
$=(6784+10000)-1$
$=16784-1$
$=110577$

$$
=16783
$$

6. For any whole numbers a, b and c, $(a+b)+c=a+(b+c)$ is true by the associative and commutative law's of addition of whole numbers.
7. (a) From the magic square,

Sum of digits placed at diagonal

$$
\begin{aligned}
& =8+5+2 \\
& =15 \\
& \therefore \quad A=15-(8+6)=15-14=1 \\
& E=15-(A+5)=15-(1+5)=15-6=9 \\
& D=15-(E+2)=15-(9+2)=15-11=4 \\
& B=15-(8+D)=15-(8+4)=15-12=3 \\
& C=15-(6+2)=15-8=7
\end{aligned}
$$

8	A	6				
B	5	C				
D	E	2	\longrightarrow	8	1	6
:---	:---	:---				
3	5	7				
4	9	2				

(b) From the magic square,

Sum of the digits placed placed in first horizontal row $=10+5+12$

$$
=27
$$

$$
\begin{array}{ll}
\therefore \quad & A=27-(5+13)=27-18=9 \\
& B=27-(12+7)=27-19=8 \\
C & =27-(A+7)=27-(9+7)=27-16=11 \\
D & =27-(13+B)=27-(13+8)=27-21=6
\end{array}
$$

(c) Sum of the digits placed at diagonal $=4+14+9+19$

$$
=46
$$

$\therefore A=46-(18+17+4)$

$$
=46-39=7
$$

A	18	17	4
F	G	14	11
D	9	10	B
19	E	C	16

\rightarrow| 7 | 18 | 17 | 4 |
| :---: | :---: | :---: | :---: |
| 8 | 13 | 14 | 11 |
| 12 | 9 | 10 | 15 |
| 19 | 6 | 5 | 16 |

$B=46-(4+11+16)=46-31=15$
$C=46-(17+14+10)=46-41=5$
$D=46-(9+10+B)=46-(19+15)=46-34=12$
$E=46-(19+C+16)=46-(35+5)=46-40=6$
$F=46-(A+D+19)=46-(7+12+19)=46-38=8$
$G=46-(F+14+11)=46-(8+25)=46-33=13$
(d) Sum of the digits placed at diagonal $=2+12+7+17$

$$
=38
$$

$\therefore A=38-(2+15+16)$
$=38-33=5$
$B=38-(2+9+14)$
$=38-25=13$
$C=38-(A+10+17)=38-(5+27)=38-32=5$
$D=38-(9+12+C)=38-(21+6)=38-27=11$

$$
\begin{aligned}
& E=38-(B+7+10)=38-(13+17)=38-30=8 \\
& F=38-(15+12+E)=38-(27+8)=38-35=3 \\
& G=38-(16+D+7)=38-(23+11)=38-34=4
\end{aligned}
$$

8. (a) T
(b) F
(c) T

EXERCISE 3C

1. Note, here we will use

Difference + Subtrahend $=$ Minuend to check the result is correct.
(a) $57839-2983=54856$
(b) 6237-694 = 5543

Checking :

$54856+2983=57839$
(c) $21205-10899=10306$

Checking :

$10306+10899=21205$

Checking :
$5543+694=6237$
(d) $400000-98798=301202$

Checking :

$301202+98798=400000$
2. (a)

5813	(b)3942 -1562 4251	-2575		(c) 1000000

3. (a) $573-9=573-(10-1)=573-10+1=563+1=564$
(b) $6742-99=6742-(100-1)=6742-100+1=6642+1=6643$
(c) $9750-999=9750-(1000-1)=9750-1000+1=8750+1=8751$
(d) $24006-9999=24006-(10000-1)=24006-10000+1$

$$
=14006+1=14007
$$

4. Smallest 7-digit number $=1000000$

Largest 4-digit number $=9999$

$$
\begin{aligned}
\text { Difference } & =1000000-9999 \\
& =990001
\end{aligned}
$$

5. (a) $n+4=9$

Here, n is subtrahend.
So, \quad Subtrahend $=$ Minuend - Difference

$$
\begin{array}{ll}
\Rightarrow & n=9-4 \\
\Rightarrow & n=5
\end{array}
$$

(b) $n-18=39$

Here, n is minuend.
So, \quad Minuend $=$ Difference + Subtrahend
$\Rightarrow \quad n=39+18$
$\Rightarrow \quad n=57$
(c) $n+35=101$

Here, n is subtrahend.
So, \quad Subtrahend $=$ Minuend - Difference

$$
\begin{array}{ll}
\Rightarrow & =101-35 \\
\Rightarrow & =66
\end{array}
$$

(d) $n-20568=21403$

Here, n is minuend.
So, \quad Minuend $=$ Difference + Subtrahend
$\Rightarrow \quad=21403+20568$
$\Rightarrow \quad=41971$
6. Amount of money in account $={ }^{`} 136000$

Amount of money withdrew $=` 73129$
$\therefore \quad$ Money was left in account $=` 136000-` 73129$

$$
\text { =` } 62871
$$

Hence, ` 62871 was left in account of Mohan. 7. Total amount of money \(={ }^{`} 100000\)

Cost of TV set $=` 38750$
Cost of refrigerator $=$ ` 23890 Cost of jewellery =` 35560
So, Mrs Sharma spent money $=$ ` \(38750+` 23890+` 35560\)

$$
=` 98200
$$

$\therefore \quad$ Amount of money was left with her $=` 100000-` 98200$

$$
=^{`} 1800
$$

Hence, ` 1800 was left with Mrs Sharma.
8. Total population of the town $=110500$

New births $=3608$
Number of persons died $=8973$
\therefore Population at the end of year $=110500+3608-8973$

$$
\begin{aligned}
& =114108-8973 \\
& =105135
\end{aligned}
$$

Hence, the population of town at the end of the year was 105135.

EXERCISE 3D

1. (a) $1369 \times 0=0$
(b) $246 \times 1=246$
(c) $286 \times 753=753 \times 286$
(d) $593 \times 188=188 \times 593$
(e) $13 \times 100 \times 1000=1300000$
(f) $38 \times(91 \times 37)=91 \times(38 \times 37)$
(g) $68 \times 95=68 \times 100-68 \times 5$
(h) $59 \times 66+59 \times 34=59 \times(66+34)$
2. (a) Multiplicative property of zero
(b) Multiplicative identity
(c) Closure property for multiplication
(d) Commutative property for multiplication
(e) Associative property for multiplication
(f) Distributive property for multiplication over subtraction.
3. (a) $647 \times 13+647 \times 7$

$$
\begin{aligned}
& =647(13+7) \quad \text { (by distributive law over addition) } \\
& =647 \times 20 \\
& =12940
\end{aligned}
$$

(b) $7459 \times 999+7459$

$$
\begin{aligned}
& =7459(999+1) \quad \text { (by distributive law over addition) } \\
& =7459 \times 1000 \\
& =7459000
\end{aligned}
$$

(c) $569 \times 17+569 \times 13+569 \times 70$

$$
\begin{aligned}
& =569(17+13+70) \quad \text { (by distributive law over addition) } \\
& =569 \times 100 \\
& =56900
\end{aligned}
$$

(d) $8759 \times 94+8759 \times 6$

$$
\begin{aligned}
& =8759(94+6) \quad \text { (by distributive law over addition) } \\
& =8759 \times 100 \\
& =875900
\end{aligned}
$$

(e) $16825 \times 16825-16825 \times 6825$

$$
=16825(16825-6825)
$$

(by distributive law over subtraction)
$=16825 \times 10000$

$$
=168250000
$$

(f) $9870 \times 561-9870 \times 461$

$$
\begin{aligned}
& =9870(561-461) \quad(\text { by distributive law over subtraction }) \\
& =9870 \times 100 \\
& =987000
\end{aligned}
$$

4. (a) $4 \times 927 \times 25=927 \times(4 \times 25)$
(b) $2 \times 1658 \times 50=1658 \times(2 \times 50)$

$$
\begin{aligned}
& =927 \times 100 \\
& =92700
\end{aligned}
$$

$$
\begin{aligned}
& =1658 \times 100 \\
& =165800
\end{aligned}
$$

(c) $574 \times 625 \times 16$
(d) $250 \times 60 \times 50 \times 8$
$=574 \times(625 \times(1255) 0 \times 8) \times(60 \times 50)$
$=574 \times 10000$
$=2000 \times 3000$
$=5740000$
$=6000000$
(e) $8 \times 125 \times 40 \times 25$
(f) $625 \times 20 \times 8 \times 50$
$=(8 \times 125) \times(40 \times 25)$
$=1000 \times 1000$
$=(625 \times 8) \times(20 \times 50)$
$=1000000$
$=5000 \times 1000$
$=5000000$
5. (a) $580 \times 64=(600-20) \times 64$

$$
\begin{aligned}
& =600 \times 64-20 \times 64 \\
& =600(60+4)-20 \times(60+4) \\
& =600 \times 60+600 \times 4-20 \times 60-20 \times 4 \\
& =36000+2400-1200-80 \\
& =38400-1280 \\
& =37120
\end{aligned}
$$

(b) $947 \times 96=(950-3) \times 96$

$$
\begin{aligned}
& =950 \times 96-3 \times 96 \\
& =950 \times(100-4)-3 \times(100-4) \\
& =950 \times 100-950 \times 4-3 \times 100+3 \times 4 \\
& =95000-3800-300+12 \\
& =95012-4100 \\
& =90912
\end{aligned}
$$

(c) $740 \times 105=740 \times(100+5)$

$$
=740 \times 100+740 \times 5
$$

$$
=74000+3700
$$

$$
=77700
$$

(d) $439 \times 997=439 \times(1000-3)$

$$
\begin{aligned}
& =439 \times 1000-439 \times 3 \\
& =(440-1) \times 1000-(440-1) \times 3 \\
& =440 \times 1000-1 \times 1000-440 \times 3+1 \times 3 \\
& =440000-1000-1320+3 \\
& =440003-2320 \\
& =437683
\end{aligned}
$$

(e) $996 \times 367=(1000-4) \times 367$

$$
\begin{aligned}
& =1000 \times 367-4 \times 367 \\
& =367000-4(370-3) \\
& =367000-4 \times 370+4 \times 3 \\
& =367000-1480+12 \\
& =367012-1480 \\
& =365532
\end{aligned}
$$

(f) $1553 \times 198=1553 \times(200-2)$

$$
\begin{aligned}
& =1553 \times 200-1553 \times 2 \\
& =(1550+3) \times 200-(1550+3) \times 2 \\
& =1550 \times 200+3 \times 200-1550 \times 2-3 \times 2 \\
& =310000+600-3100-6 \\
& =310600-3106 \\
& =307494
\end{aligned}
$$

(g) $472 \times 1097=472 \times(1100-3)$

$$
=472 \times 1100-472 \times 3
$$

$$
=(480-8) \times 1100-(480-8) \times 3
$$

$$
=480 \times 1100-8 \times 1100-480 \times 3+8 \times 3
$$

$$
=528000-8800-1440+24
$$

$$
=528024-10240
$$

$$
=517784
$$

(h) $245 \times 1008=245 \times(1000+8)$

$$
\begin{aligned}
& =245 \times 1000+245 \times 8 \\
& =245000+(250-5) \times 8 \\
& =245000+250 \times 8-5 \times 8 \\
& =245000+2000-40 \\
& =247000-40 \\
& =246960
\end{aligned}
$$

6. (a) 3576×9
(b) 847×99

$$
\begin{aligned}
= & 3576 \times(10-1) \\
= & 3576 \times 10-3576 \times 1 \\
& (\text { using distributive law) } \\
= & 35760-3576 \\
= & 32184
\end{aligned}
$$

$$
=847 \times(100-1)
$$

$$
=847 \times 100-847 \times 1
$$

(using distributive law)
$=84700-847$
$=83853$
(c) $2437 \times 999=2437 \times(1000-1)$

$$
\begin{aligned}
& =2437 \times 1000-2437 \times 1 \quad \text { (using distributive law) } \\
& =2437000-2437 \\
& =2434563
\end{aligned}
$$

7. (a)

3709	458	
$\times 89$	$\times 67$	
33381	3206	multiplication by 7
296720	27480	multiplication by 6
330101	30686	multiplication by 67

(c) 15208
\qquad 608320 multiplication by 40
7604000 multiplication by 500
8242736 multiplication by 542
(d) 4617
$\begin{array}{r}\times 234 \\ \hline\end{array}$
18468 multiplication by 4
138510 multiplication by 30
923400 multiplication by 200
$\overline{1080378}$ multiplication by 234
8. If the product of two whole numbers is 0 , it means at least one of the given numbers is 0 .
9. Total number of houses $=197$

Cost of construction of 1 house $=` 4,50,000$

$$
\begin{aligned}
\therefore \quad \text { Total cost } & =`(450000 \times 197) \\
& =`\{450000 \times(200-3)\} \\
& =`\{450000 \times 200-450000 \times 3\} \\
& =` 90000000-1350000 \\
& =` 88650000
\end{aligned}
$$

Hence, the cost of 197 houses is ' 88650000 .
10. Distance covered in 1 hour $=75 \mathrm{~km}$

Distance covered in 98 hours $=(75 \times 98) \mathrm{km}$

$$
\begin{aligned}
& =\{75 \times(100-2)\} \mathrm{km} \\
& =\{75 \times 100-75 \times 2\} \mathrm{km} \\
& =(7500-150) \mathrm{km} \\
& =7350 \mathrm{~km}
\end{aligned}
$$

Hence, truck will cover 7350 km in 98 hours.
11. Total number of TVs $=150$

Cost of 1 TV set $=` 24350$
$\therefore \quad$ Cost of $150 \mathrm{TVs}={ }^{`}(24350 \times 150)$

$$
\begin{aligned}
& =`\{24350 \times(100+50)\} \\
& =`\{24350 \times 100+24350 \times 50\} \\
& =` 2435000+1217500 \\
& =` 3652500
\end{aligned}
$$

Hence, cost of all the sets of TVs will be ` 3652500.
12. (a) Given, $a \times a=a$
$\Rightarrow \quad a^{2}=a$
Dividing both sides by a

$$
a=1
$$

Hence, for $a=1, a \times a=a$ will be true.
(b) even
(c) odd

EXERCISE 3E

1. (a) Dividend $=1968$

Divisor $=16$
So, \quad Quotient $=123$
Checking :
Quotient \times Divisor $=123 \times 16$
$=1968$
$=$ Dividend

$$
\begin{array}{r}
1 6 \longdiv { 1 9 6 8 } \\
\frac{16}{-16} \\
\hline 36 \\
-32 \\
\hline 48 \\
\frac{-48}{\times} \\
\hline
\end{array}
$$

(b) Dividend $=11844$

Divisor $=12$
$1 2 \longdiv { 9 8 7 }$
So, \quad Quotient $=987$

Checking :

Quotient \times Divisor $=987 \times 12$
$=11844$
$=$ Dividend

$\frac{-108}{104}$
$\frac{-96}{84}$
$\frac{-84}{\times}$

(c) Dividend $=1875$

75
Divisor $=25$
$2 5 \longdiv { 1 8 7 5 }$
So, \quad Quotient $=75$

Checking :

$\begin{array}{r}-175 \\ \hline 125\end{array}$
Quotient \times Divisor $=75 \times 25$
$=1875$
$=$ Dividend
(d) Dividend $=20864$

Divisor $=32$
So, \quad Quotient $=652$

Checking :

Quotient \times Divisor $=652 \times 32$
$3 2 \longdiv { 2 0 8 6 4 }$
$=20864$
$=$ Dividend
$\frac{-192}{166}$
$\begin{array}{r}-160 \\ \hline 64\end{array}$
$\begin{array}{r}\frac{-125}{\times} \\ \hline 652 \\ \hline 864\end{array}$
$\begin{array}{r}-64 \\ \times \\ \hline\end{array}$
(e) Dividend $=34419$

Divisor $=149$
$1 4 9 \longdiv { 2 3 4 1 9 }$
$\frac{-298}{461}$
Checking :
Quotient \times Divisor $=231 \times 149$
$=34419$
$=$ Dividend
(f) Dividend $=39039$

Divisor $=1001$
So, \quad Quotient $=39$
Checking :
Quotient \times Divisor $=39 \times 1001$
$=39039$
$=$ Dividend
2. (a) Dividend $=42897$

Divisor $=34$
So,
Quotient $=1261$
Remainder $=23$

Checking :

Quotient \times Divisor + Remainder
$=1261 \times 34+23$
$=42874+23$
$=42897$
$=$ Dividend
(b) Dividend $=57284$

Divisor $=53$
So, \quad Quotient $=1080$
Remainder $=44$
Checking :
Quotient \times Divisor + Remainder

$$
=1080 \times 53+44
$$

$$
=57240+44
$$

$$
=57284
$$

$=$ Dividend
(c) Dividend $=190245$

Divisor $=67$
So, \quad Quotient $=2839$
Remainder $=32$
Checking :
Quotient \times Divisor + Remainder
$=2839 \times 67+32$
$=190213+32$
$=190245=$ Dividend
(d) Dividend $=281963$

Divisor $=85$
So, \quad Quotient $=3317$
Remainder $=18$
2839
$6 7 \longdiv { 1 9 0 2 4 5 }$
-134
562
-536
264
$\frac{-201}{635}$
-603

$$
\text { Remainder }=18
$$

Checking :
$8 5 \longdiv { 3 3 1 7 }$

Quotient \times Divisor + Remainder
$\frac{-255}{269}$

$$
-255
$$

$$
146
$$

$$
\begin{aligned}
& =3317 \times 85+18 \\
& \\
& =281945+18 \\
& \\
& =281963 \\
& \\
& =\text { Dividend }
\end{aligned}
$$

$$
\frac{-85}{613}
$$

$$
\begin{array}{r}
-595 \\
\hline 18 \\
\hline
\end{array}
$$

(e) Dividend $=23025$

Divisor $=1000$

$$
1 0 0 0 \longdiv { 2 3 0 2 5 }
$$

So, \quad Quotient $=23$
Remainder $=25$

$$
\frac{-2000}{3025}
$$

Checking :

Quotient \times Divisor + Remainder

$$
\begin{aligned}
& =23 \times 1000+25 \\
& =23000+25 \\
& =23025=\text { Dividend }
\end{aligned}
$$

(f) Dividend $=5737479$

$$
6 8 \longdiv { 5 7 3 7 4 7 9 }
$$

Divisor $=68$

$$
\frac{-544}{297}
$$

So, \quad Quotient $=84374$
Remainder $=47$

Checking :

Quotient \times Divisor + Remainder

$$
\begin{aligned}
& =84374 \times 68+47 \\
& =5737432+47 \\
& =5737479=\text { Dividend }
\end{aligned}
$$

3. (a) $5217 \div 1=5217$
(b) $0 \div 89=0$
(c) $6250 \div 10=625$
(d) $23 \div 0=$ Meaning less
(e) $240 \div 8=30$
(f) $2700 \div 9=300$
4. Smallest 6-digit number $=100000$

83 | $\frac{1204}{100000}$ |
| ---: |
| $\frac{-83}{170}$ |
| -166 |
| 400 |
| $\frac{-332}{68}$ |

5. Largest 5-digit number $=99999$

153
Here, $99999-90=99909$ will be exactly divisible by $6 5 3 \longdiv { 9 9 9 9 9 }$ 653.

Checking :
$\frac{-653}{3469}$
(Quotient \times Divisor) + Remainder
$=(153 \times 653)+$ $\begin{array}{r}-3265 \\ \hline 2049\end{array}$
$=(153 \times 653)+90$
$=99909+90$
$=99999$
$=$ Dividend
6. Largest 4-digit number $=9999$

Here, 9999-9 = 9990 will be the largest 4-digit number 15 $\longdiv { 9 9 9 9 }$ exactly divisible by 15 .
$\begin{array}{r}-90 \\ \hline 99\end{array}$
$\begin{array}{r}-90 \\ \hline 9\end{array}$
7. Given,

$$
n \div n=n
$$

$\Rightarrow \quad \frac{n}{n}=n$
$\Rightarrow \quad 1=n$
or $\quad n=1$
Hence, for $n=1, n \div n=n$ will be true.
8. Product of two numbers $=504347$

One number $=317$
\therefore One number \times other number $=504347$

$$
317 \times \text { other number }=504347
$$

$$
\text { other number }=\frac{504347}{317}=1591
$$

Hence, the other number is 1591.
9. Dividend $=59761$

$$
\begin{aligned}
& \begin{array}{r}
316 \\
1 8 9 \longdiv { 5 9 7 2 4 }
\end{array} \\
& 1 8 9 \longdiv { 5 9 7 2 4 } \\
& \frac{-567}{302} \\
& -189 \\
& 1134 \\
& \frac{-1134}{\times}
\end{aligned}
$$

Quotient $=189$
Remainder $=37$
$\therefore \quad$ Dividend $=$ Quotient \times Divisor + Remainder
$59761=189 \times$ Divisor +37
$189 \times$ Divisor $=59761-37$
$189 \times$ Divisor $=59724$
Divisor $=59724 \div 189=316$
10. Dividend $=55390$

Divisor $=299$ 185

Remainder $=75$
By division algorithm we have $2 9 9 \longdiv { 5 5 3 1 5 }$ -299
$\therefore \quad$ Dividend $=($ Divisor \times Quotient $)+$ Remainder $55390=(299 \times$ Quotient $)+75$
55390-75 $=299 \times$ Quotient
2541

Quotient $=55315 \div 299$

$$
=185
$$

Hence, the quotient is 185 .
11.

	156
	$8 7 \longdiv { 1 3 6 0 1 }$
	-87
	490
	-435
$\therefore \quad$ Remainder $=29$	551
Hence, 29 should be subtracted from 13601 to make it	-522
exactly divisible by 87 .	29

12. Here,

$$
23 \times 45=1035
$$

$2 3 \longdiv { 1 0 5 6 }$
$23 \times 46=1058$ $\frac{-2392}{1495}$

$23 \times 46=1058$	$2 3 \longdiv { 1 0 5 6 }$
$\therefore \quad 1035<1056<1058$	6
Hence $1058-1056=2$ should be added to 1056 to make it exactly divisible by 23 .	$\begin{array}{r}-115 \\ \hline 21 \\ \hline\end{array}$

13. Cost of 23 colour television sets $=` 570055$

Cost of 1 colour television set $=`(570055 \div 23)$

$$
={ }^{`} 24785
$$

$$
\begin{aligned}
& 2 3 \longdiv { 5 7 0 0 5 5 } \\
& \frac{-46}{110}
\end{aligned}
$$

Hence, the cost of each TV set is ` 24785.

$$
\frac{-92}{180}
$$

$$
\frac{-161}{195}
$$

$$
\frac{-184}{115}
$$

$\begin{array}{r}-115 \\ \hline 0 \\ \hline\end{array}$
14. If cost is ' 29 , then number of bananas $=1$ dozen

If cost is ` 1392 , then number of bananas $=1392 \div 29$ dozen

48
$\frac{-116}{232}$
$\frac{-232}{\times}$

15. Total number of tree $=19625$
$\begin{array}{r}125 \\ 157 \\ \hline 19625\end{array}$
Number of rows $=157$
\therefore Number of trees in each row $=19625 \div 157$ trees $\frac{-157}{392}$
$=125$ trees
$\begin{array}{r}-314 \\ \hline 785\end{array}$
Hence, 125 trees are there in each row.

$$
\frac{-785}{\times}
$$

EXERCISE 3 F

1. (c)
2. (b)
3. (b)
4. (b)
5. (a)
6. (b)
7. Smallest 4-digit number $=1000$

$$
\begin{aligned}
& 9 \begin{array}{c}
111 \\
\frac{1000}{-9} \\
\hline 10 \\
\frac{-9}{10} \\
\frac{-9}{1} \\
\hline
\end{array}
\end{aligned}
$$

$\therefore \quad 1008$ is least 4-digit number exactly divisible by 9 .
\therefore (d) is correct.
8. Here, $23 \times 437=10051$
and $23 \times 438=10074$
We have, $\quad 10051$ < 10056 < 10074
Hence, $10074-10056=18$ will be added to 10056 to make

$$
\begin{gathered}
2 3 \longdiv { 4 3 7 } \\
\frac{4056}{85} \\
\frac{-69}{166}
\end{gathered}
$$ it exactly divisible by 23 .

\therefore (b) is correct.
9. Required whole numbers $=1203-1018-1=184$
\therefore (c) is correct.
10. Divisor $=46$

Quotient = 11
Remainder $=15$
Required number will be dividend.

$$
\begin{aligned}
\therefore \quad \text { Dividend } & =\text { Quotient } \times \text { Divisor }+ \text { Remainder } \\
& =11 \times 46+15 \\
& =506+15=521
\end{aligned}
$$

\therefore (b) is correct.
11. Divisor $=\frac{\text { Dividend }- \text { Remainder }}{\text { Quotient }}$

Dividend $=199$
Quotient $=16$
Remainder $=7$
Divisor $=\frac{199-7}{16}=\frac{192}{16}=12$
\therefore (c) is correct.
12. Let the required number be A.

$$
\begin{aligned}
& & 7589-A & =3434 \\
\Rightarrow & & A & =7589-3434 \\
\Rightarrow & & A & =4155
\end{aligned}
$$

\therefore (c) is correct.
13. $587 \times 99=587 \times(100-1)=587 \times 100-587$

$$
=58700-587=58113
$$

\therefore (c) is correct.
14. $4 \times 538 \times 25=(4 \times 25) \times 538$

$$
=100 \times 538=53800
$$

\therefore (c) is correct.
15. $24679 \times 92+24679 \times 8=24679(92+8)$

$$
\begin{aligned}
& =24679 \times 100 \\
& =2467900
\end{aligned}
$$

\therefore (c) is correct.

HOTS

- Rekha's off is every 4th day

Kamal's off is every 3rd day
Next off of both is $4 \times 3=12$ th day

$$
\begin{aligned}
& =4 \text { th June }+12 \text { days } \\
& =16 \text { th June }
\end{aligned}
$$

Hence, they have a next day off together is 16th June.

VALUE BASED

- The monthly earning of Mr. Verma = ` 28,800

Monthly saving $=` 4,800$
He save in one year $=12 \times{ }^{`} 4,800 \quad(\because 1$ year $=12$ months $)$

$$
=` 57,600
$$

He donates per month $=` 1500$
He donates in one year $=12 \times ` 1500$

$$
=` 18,000
$$

\square Chapter 4 Integers

EXERCISE 4A

1. (a) A decrease of 6
(b) A gain of ${ }^{`} 8$
(c) Losing a weight of 7 kg
(d) 15 km below sea level
(e) $4^{\circ} \mathrm{C}$ above freezing point
(f) A withdrawal of `500 (g) Spending` 800
(h) Going 10 m to the west
(i) -52
(j) 43
2. (a) + 700
(b) - ' 900
(c) $-9^{\circ} \mathrm{C}$
(d) -8
(e) +5 km
(f) -6 km
(g) + ${ }^{`} 400$
(h) - ${ }^{`} 200$
3.

4. (a) 0
(b) -2
(c) 3
(d) 7
(e) -415
(f) 9
5. (a) -6
(b) -2
(c) -28
(d) -25
(e) -785
(f) -666
6. (a) Integers between -5 and $0=-4,-3,-2,-1$
(b) Integers between 0 and $6=1,2,3,4,5$
(c) Integers between -7 and $-5=-6$
(d) Integers between -3 and $3=-2,-1,0,1,2$
7. (a) $0 \square 6$
(b) $0>-5$
(c) $-4 \square-1$
(d) $11 \triangle-25$
(e) $-325 \square-139$
(f) $-5<5$
8. (a) $-100<-23<-6<-1<0<12$
\therefore Increasing order $=-100,-23,-6,-1,0,12$
(b) $-501<-363<-17<15<165$
\therefore Increasing order $=-501,-363,-17,15,165$
(c) $-106<-81<-16<-2<0<16<21$
\therefore Increasing order $=-106,-81,-16,-2,0,16,21$
(d) $-7<-2<0<5<8$
\therefore Increasing order $=-7,-2,0,5,8$
9. (a) $36>0>-5>-71>-81$
\therefore Decreasing order $=36,0,-5,-71,-81$
(b) $36>7>0>-3>-9>-132$
\therefore Decreasing order $=36,7,0,-3,-9,-132$
(c) $413>102>-7>-365>-515$
\therefore Decreasing order $=413,102,-7,-365,-515$
(d) $51>0>-2>-8>-53$
\therefore Decreasing order $=51,0,-2,-8,-53$
10. (a)

$\therefore \quad 5+3=8$
(b)

$$
\therefore \quad-5+4=-1
$$

(c)

$\therefore \quad 1-5=-4$
(d)

$\therefore \quad-4-3=-7$
11. (a) F
(b) T
(c) F
(d) T
(e) F
(f) F
(g) F
(h) F
(i) T
12. (a) $|0|=0$
(b) $-|-3|=-3$
(c) $|-9|=9$
(d) $|15|=15$
(e) $|-36|=36$
(f) $|7-4|=|3|=3$
(g) $8-|-7|=8-7=1$
(h) $7+|-3|=7+3=10$
13. (a) Five negative integers less than -20 are :

$$
-21,-22,-23,-24,-25
$$

(b) Five negative integers greater than -7 are :

$$
-6,-5,-4,-3,-2
$$

EXERCISE 4B

1. (a) On number line, we start from 0 and move 8 steps to the right to reach at point A. Now, starting from A, we move 7 steps to the left and reach at point B, as shown below.

And B represents the integer 1 .
\therefore

$$
8+(-7)=1
$$

(b) On number line, we start from 0 and move 2 steps to the left to reach at point A. Now, starting from A, we move 6 steps to the right and reach at point B.

And B represents the integer 4 .

$$
\therefore \quad(-2)+6=4
$$

(c) On number line, we start from 0 and move 5 steps to the right to reach at point A. Now, starting from A, we move 5 steps to the left and reach at point B.

And B represents the integer 0 .
$\therefore \quad 5+(-5)=0$
(d) On number line, we start from 0 and move 2 steps to the left to reach at point A. Now, starting from A, we move 4 steps to the left and reach at point B.

And B represents the integer -6 .
$\therefore \quad(-2)+(-4)=-6$
(e) On number line, we start from 0 and move 5 steps to the left to reach at point A. Now, start from point A, we move 6 steps again to the left and reach at point B.

And B represents the integer -11 .
$\therefore \quad(-5)+(-6)=-11$
(f) On number line, we start from 0 and move 3 steps to the left to reach at point A. Now, start from A, we move 7 steps again to the left and reach at point B.

And B represents the integer -10 .

$$
\therefore \quad(-3)+(-7)=-10
$$

(g) On number line, we start from 0 and move 3 steps to the right to reach at point A. Now, start from point A, we move 2 steps to left and reach at point B. Again starting from point B, we move 4 steps again to the left and reach at point C.

And C represents the integer -3 .
$\therefore \quad 3+(-2)+(-4)=-3$
(h) On number line, we start from 0 and move 1 step to the left to reach at point A. Now, start from point A, we move 2 steps again to the left and reach at point B. Again starting from point B, we move 3 steps again to the left and reach to the point C.

And C represents the integer -6 .

$$
\therefore \quad(-1)+(-2)+(-3)=-6
$$

(i) On number line, we start from 0 and move 5 steps to the right to reach at point A. Now, starting from point A, move 2 steps to the left and reach at point B. Again starting from point B, we move 6 steps to the left and reach to the point C.

And C represents the integer -3 .
$\therefore \quad 5+(-2)+(-6)=-3$
2. (a) $(-9)+16=7$
(b) $(-7)+(-8)=-15$
(c) $(-3)+(-9)=-12$
(d) $2+(-12)=-10$
(e) $8+(-17)=-9$
(f) $(-13)+25=12$
3. (a) -256
(b) -37
(c) -2056
(d) -4685
$\begin{array}{r}-78 \\ \hline-334 \\ \hline\end{array}$
$\begin{array}{r}-578 \\ -615 \\ \hline-287\end{array}$
$\begin{array}{r}-789 \\ \hline-2845 \\ \hline\end{array}$
$\begin{array}{r}-2078 \\ \hline-6763 \\ \hline\end{array}$
4. (a) -307
(b) +287
(c) -205
(d) -394
$\begin{array}{r}+89 \\ +218 \\ \hline\end{array}$

-96
191

+413
+208

+198
-196

5. (a) $\{(-18)+25\}+(-37)$

$$
\begin{aligned}
\text { (b) } & (-36)+100 \\
& =64
\end{aligned}
$$

(c) $(-36)+1027=991$
(d) $137+(-354)=-217$
(e) $1001+(-13)=988$
(f) $(-3057)+199=-2858$
(g) $(-389)+(-1032)=-1421$
(h) $3002+(-888)=2114$
(i) $\{(-51)+(-203)\}+36+(-28)$
(j) $\{(-312)+39\}+192$
$=\{(-254)+36\}+(-28)$ $=(-273)+192$
$=(-218)+(-28)$

$$
=-81
$$

$$
=-246
$$

6. (a) Additive inverse of $-57=57$
(b) Additive inverse of $183=-183$
(c) Additive inverse of $0=0$
(d) Additive inverse of $-1001=1001$
(e) Additive inverse of $2054=-2054$
(f) Additive inverse of $-3000=3000$
7. (a) Successor of $-5=-5+1=-4$
(b) Successor of $70=70+1=71$
(c) Successor of $-99=-99+1=-98$
(d) Successor of $201=201+1=202$
(e) Successor of $-500=-500+1=-499$
(f) Successor of $-799=-799+1=-798$
8. (a) Predecessor of $-8=-8-1=-9$
(b) Predecessor of $79=79-1=78$
(c) Predecessor of $120=120-1=119$
(d) Predecessor of $-141=-141-1=-142$
(e) Predecessor of $-300=-300-1=-301$
(f) Predecessor of $-450=-450-1=-451$
9. (a) $\{(-7)+(-9)\}+\{12+(-16)\}=(-16)+(-4)=-20$
(b) $\{37+(-23)\}+\{(-65)+9\}+(-12)=14+\{(-56)+(-12)\}$

$$
\begin{aligned}
& =14+(-68) \\
& =-54
\end{aligned}
$$

(c) $\{1056+(-798)\}+(-38)+\{44+(-1)\}=258+\{(-38)+43\}$

$$
\begin{aligned}
& =258+5 \\
& =263
\end{aligned}
$$

(d) $\{(-145)+79\}+(-265)+\{(-41)+2\}=(-66)+(-265)+(-39)$

$$
=-370
$$

10. Total cost price of all erasers $=` 30+` 25=` 55$

Total cost price of all pencils $={ }^{`} 90$
\therefore Total cost price of erasers and pencils $=` 55+` 90=` 145$

$$
\text { Selling price of erasers }=` 20
$$

Selling price of pencils $={ }^{`} 70$
$\therefore \quad$ Total selling price $={ }^{`} 20+{ }^{`} 70={ }^{`} 90$
Here, Total cost price > Total selling price So, there is loss.
\therefore

$$
\text { Loss }=` 145-^{`} 90=` 55
$$

11. (a) F
(b) F
(c) T
(d) F
(e) T
(f) F

EXERCISE 4C

1. (a) $0-(-92)=92$
(b) $0-219=-219$
(c) $-37-68=-105$
(d) $25-(-15)=25+15=40$
(e) $-34-18=-52$
(f) $-43-(-28)=-43+28=-15$
(g) $6250-(-3012)=6250+3012=9262$
(h) $-271-6240=-6511$
(i) $-287-(-2768)=-287+2768=2481$
2. $\{-8-(-68)\}+(-36)=(-8+68)+(-36)$

$$
\begin{aligned}
& =60+(-36) \\
& =24
\end{aligned}
$$

3. $\{33+(-47)\}-(-84)=-14-(-84)$

$$
\begin{aligned}
& =-14+84 \\
& =70
\end{aligned}
$$

4. $\{136+(-272)\}-\{(-250)+138\}=(136-272)-(-250+138)$

$$
\begin{aligned}
& =-136-(-112) \\
& =-136+112 \\
& =-24
\end{aligned}
$$

5. $-23-(-1050+813)=-23-(-237)$

$$
\begin{aligned}
& =-23+237 \\
& =214
\end{aligned}
$$

6. $34-(-72)=34+72=106$

$$
\begin{array}{lc}
& (-72)-34=-72-34=-106 \\
\because & 106>-106 \\
\text { Hence, } & 34-(-72)>(-72)-34
\end{array}
$$

7. Sum of two integers $=-13$

One number $=170$
$\therefore \quad 170+$ other number $=-13$

$$
\begin{aligned}
\text { other number } & =-13-170 \\
& =-183
\end{aligned}
$$

8. Sum of two integers $=65$

$$
\text { One integer }=-47
$$

$\therefore \quad-47+$ other integer $=65$

$$
\begin{aligned}
\text { other integer } & =65+47 \\
& =112
\end{aligned}
$$

9. (a) $[-13-(-17)]+[-22-(-40)]=(-13+17)+(-22+40)$

$$
\begin{aligned}
& =4+18 \\
& =22
\end{aligned}
$$

(b) $[37-(-8)]+[11-(-30)]=(37+8)+(11+30)$

$$
\begin{aligned}
& =45+41 \\
& =86
\end{aligned}
$$

10. (a) True
(b) False
(c) False
(d) True
(e) True

EXERCISE 4D

1. (a) $14 \times 8=112$
(b) $19 \times(-6)=-(19 \times 6)=-114$
(c) $32 \times(-12)=-(32 \times 12)=-384$
(d) $(-16) \times 15=-(16 \times 15)=-240$
(e) $-44 \times 14=-(44 \times 14)=-616$
(f) $37 \times(-13)=-(37 \times 13)=-481$
(g) $-97 \times 0=0$
(h) $0 \times(-58)=0$
(i) $(-14) \times(-7)=14 \times 7=98$
(j) $(-647) \times(-6)=647 \times 6=3882$
(k) $125 \times(-5)=-(125 \times 5)=-625$
(l) $(-382) \times(-162)=382 \times 162=61884$
2. (a) $2 \times(-5) \times(-6)=2 \times 5 \times 6=10 \times 6=60$
(b) $(-8) \times 3 \times 5=-(8 \times 3 \times 5)=-(24 \times 5)=-120$
(c) $(-2) \times 3 \times(-4)=2 \times 3 \times 4=6 \times 4=24$
(d) $(-3) \times(-7) \times(-6)=-(3 \times 7 \times 6)=-(21 \times 6)=-126$
(e) $(-8) \times(-3) \times(-9)=-(8 \times 3 \times 9)=-(24 \times 9)=-216$
(f) $8 \times 7 \times(-10)=-(8 \times 7 \times 10)=-(56 \times 10)=-560$
3. (a) $\{(-8) \times(-63)\} \times 9=(8 \times 63) \times 9=504 \times 9=4536$
(b) $18 \times(-27) \times 30=(18 \times 30) \times(-27)=540 \times(-27)$

$$
=-(540 \times 27)=-14580
$$

(c) $(-15) \times(-47) \times(-19)=(15 \times 47) \times(-19)$

$$
\begin{aligned}
& =705 \times(-19) \\
& =-13395
\end{aligned}
$$

4. (a) $8 \times(-12)+7 \times(-12)=(-12) \times(8+7)$

$$
=(-12) \times 15=-(12 \times 15)=-180
$$

(b) $(-9) \times 6+(-9) \times 4=(-9) \times(6+4)=(-9) \times 10=-(9 \times 10)=-90$
(c) $(-15) \times(-14)+(-15) \times(-6)=(-15) \times\{(-14)+(-6)\}$

$$
\begin{aligned}
& =(-15) \times(-14-6)=(-15) \times(-20) \\
& =15 \times 20=300
\end{aligned}
$$

(d) $30 \times(-22)+30 \times 14=30 \times\{(-22)+14\}=30 \times(-22+14)$

$$
=30 \times(-8)=-(30 \times 8)=-240
$$

(e) $(-36) \times 72+(-36) \times 28=(-36) \times[72+28]$

$$
=(-36) \times 100=(-36 \times 100)=-3600
$$

(f) $43 \times(-33)+43 \times(-17)=43 \times\{(-33)+(-17)\}=43 \times(-33-17)$

$$
=43 \times(-50)=-(43 \times 50)=-2150
$$

5. (a) False
(b) True
(c) False
(d) True

EXERCISE 4E

1. (a) $(-68) \div 17=\frac{-68}{17}=-4 \quad$ (b) $(-70) \div 14=\frac{-70}{14}=-5$
(c) $95 \div(-19)=\frac{95}{-19}=-5$
(d) $117 \div(-13)=\frac{117}{-13}=-9$
(e) $(-161) \div 23=\frac{-161}{23}=-7$
(f) $(-144) \div 12=\frac{-144}{12}=-12$
(g) $(-147) \div(-21)=\frac{-147}{-21}=7$
(h) $(-72) \div(-18)=\frac{-72}{-18}=4$
(i) $3176 \div(-1)=\frac{3176}{-1}=-3176$
(j) $4000 \div(-100)=\frac{4000}{-100}=-40$
(k) $1256 \div(-1256)=\frac{1256}{-1256}=-1$
(1) $0 \div(-365)=\frac{0}{-365}=0$
2. (a) Required number $=(-5) \times 15=-(5 \times 15)=-75$
(b) Required number $=70 \div(-5)=\frac{70}{-5}=-14$
(c) Required number $=(-91) \div(-7)=\frac{-91}{-7}=13$
(d) Required number $=17 \times(-3)=-(17 \times 3)=-51$
(e) Required number $=(-1) \times 37=-(1 \times 37)=-37$
(f) Required number $=1 \div(-1)=\frac{1}{-1}=-1$
(g) Required number $=1 \times(-143)=-(1 \times 143)=-143$
(h) Required number $=135 \times(-1)=-(135 \times 1)=-135$
(i) Required number $=278 \times 0=0$
3. (a) T
(b) F
(c) T
(d) F
(e) T
(f) T
(g) T
(h) F
(i) T

EXERCISE 4F

1. $(-3)-2=-3-2=-5$
2. $(-7)-2=-7-2=-9$
\therefore (c) is correct.
$\therefore \quad(a)$ is correct.
3. $(-5)+4=-5+4=-1$
\therefore (c) is correct.
4. $(-18)+1=-18+1=-17$
\therefore (c) is correct.
5. Additive inverse of $-5=-(-5)$

$$
=5
$$

\therefore (a) is correct.
9. $(-12)-(-5)=-12+5=-7$
$\therefore \quad(b)$ is correct.
11. $6-(-4)=6+4=10$
\therefore (c) is correct.
13. $(-6) \times 9=-(6 \times 9)=-54$
\therefore (b) is correct.
\therefore (b) is correct.
4. $7+|-3|=7+3=10$
\therefore (b) is correct.
6. $(-16)-1=-16-1=-17$
\therefore (b) is correct.
8. $5-(-8)=5+8=13$
10. $8+(-8)=8-8=0$
$\therefore \quad(c)$ is correct.
12. $\{(-7)+(-9)\}+\{12+(-16)\}$

$$
=(-7-9)+(12-16)
$$

$$
=(-16)+(-4)=-20
$$

\therefore (a) is correct.
14. $(-9) \times 6+(-9) \times 4$

$$
\begin{aligned}
& =(-9) \times(6+4) \\
& =(-9) \times 10 \\
& =-(9 \times 10)=-90
\end{aligned}
$$

$\therefore \quad(a)$ is correct.
15. $36 \div(-9)=\frac{36}{-9}=-4$
\therefore (b) is correct.

HOTS

- Both are at same distance.

VALUE BASED

- Free drink \rightarrow every $8^{\text {th }}$ customer

Free snack \rightarrow every $12^{\text {th }}$ customer
Free ice cream \rightarrow every $15{ }^{\text {th }}$ customer
(i) Customer was the first to receive all the three items $=\mathrm{LCM}$ of $8,12,15$
LCM $=2 \times 2 \times 2 \times 3 \times 5=120$

2	8,	12,
2	4,	6,
2	2,	3,
3	1,	3,
5	1,	1,
	1,	1,

$\therefore 120^{\text {th }}$ customer was the first to receive all the three items.
(ii) Total customers walked into the restaurant $=385$
\therefore Total customers of them received all three free items

$$
=120^{\text {th }}, 240^{\text {th }}, 360^{\text {th }}=3 \text { customers }
$$

Hence, 3 customers of them received all three free items.

Chapter 5 Fractions

EXERCISE 5A

1. (a) $\frac{1}{4}$
(b) $\frac{2}{3}$
(c) $\frac{3}{4}$
(d) $\frac{4}{9}$
(e) $\frac{3}{8}$
(f) $\frac{3}{10}$
2.

3. Two whole rectangle is not divided into 4 equal parts. So, the shaded part is not equal to $\frac{1}{4}$.
4. (a) one-eighth $=\frac{1}{8}$
(b) two-fifths $=\frac{2}{5}$
(c) three-fourths $=\frac{3}{4}$
(d) three-tenths $=\frac{3}{10}$
(e) four-sevenths $=\frac{4}{7}$
(f) five-sixths $=\frac{5}{6}$
(g) seven-twelths $=\frac{7}{12}$
(h) eight-ninths $=\frac{8}{9}$
5. (a) Numerator $=2$, denominator $=5$
(b) Numerator $=7$, denominator $=12$
(c) Numerator $=9$, denominator $=17$
(d) Numerator $=11$, denominator $=19$
(e) Numerator $=8$, denominator $=1$
6. (a) $\frac{4}{9}$
(b) $\frac{7}{10}$
(c) $\frac{11}{14}$
(d) $\frac{15}{43}$
7. (a) $\frac{1}{4}=$ one-fourths
(b) $\frac{1}{2}=$ one-half
(c) $\frac{3}{4}=$ three-fourths
(d) $\frac{2}{3}=$ two-third
(e) $\frac{4}{5}=$ four-fifths
(f) $\frac{5}{9}=$ five-ninths
(g) $\frac{6}{11}=$ six-eleventh
(h) $\frac{8}{15}=$ eight-fifteenths
(i) $\frac{9}{13}=$ nine-thirteenths
(j) $\frac{1}{17}=$ one-seventeenths
8. 1 hour $=60$ minutes

Fraction of 15 minutes from 60 minutes $=\frac{15}{60}=\frac{1}{4}$
9. (a) $\left(\frac{3}{4} \times 16\right)$ books $=12$ books
(b) $\left(\frac{3}{4} \times 28\right)$ pens $=21$ pens
(c) $\left(\frac{3}{4} \times 32\right)$ chocolates $=24$ chocolates
(d) $\left(\frac{2}{3} \times 15\right)$ marbles $=10$ marbles
(e) $\left(\frac{2}{3} \times 27\right)$ note-books $=18$ note-books
(f) $\left(\frac{2}{3} \times 36\right)$ pencils $=24$ pencils
10. (a)

(b)

(c)

(d)

(e)

EXERCISE 5B

1. Proper fractions are $: \frac{1}{3}, \frac{4}{5}, \frac{3}{11}, \frac{11}{25}$
2. Improper fractions are $: \frac{7}{5}, \frac{10}{3}, \frac{19}{12}, \frac{23}{23}, 2, \frac{38}{27}$
3. Five improper fractions with numerator 13 are given below :

$$
\frac{13}{2}, \frac{13}{3}, \frac{13}{4}, \frac{13}{5}, \frac{13}{6}
$$

4. Five improper fractions with denominator 5 are given below :

$$
\frac{6}{5}, \frac{7}{5}, \frac{8}{5}, \frac{9}{5}, \frac{11}{5}
$$

5. (a) $3 \frac{5}{11}=\frac{(3 \times 11)+5}{11}=\frac{33+5}{11}=\frac{38}{11}$
(b) $5 \frac{5}{7}=\frac{(5 \times 7)+5}{7}=\frac{35+5}{7}=\frac{40}{7}$
(c) $9 \frac{3}{8}=\frac{(9 \times 8)+3}{8}=\frac{72+3}{8}=\frac{75}{8}$
(d) $6 \frac{3}{10}=\frac{(6 \times 10)+3}{10}=\frac{60+3}{10}=\frac{63}{10}$
(e) $8 \frac{8}{13}=\frac{(8 \times 13)+8}{13}=\frac{104+8}{13}=\frac{112}{13}$
(f) $10 \frac{9}{14}=\frac{(10 \times 14)+9}{14}=\frac{140+9}{14}=\frac{149}{14}$
(g) $51 \frac{2}{3}=\frac{(51 \times 3)+2}{3}=\frac{153+2}{3}=\frac{155}{3}$
(h) $12 \frac{7}{15}=\frac{(12 \times 15)+7}{15}=\frac{180+7}{15}=\frac{187}{15}$
6. (a) On dividing 62 by 7 , we get
quotient $=8$ and remainder $=6$
$\therefore \quad \frac{62}{7}=8+\frac{6}{7}=8 \frac{6}{7}$
$7 \longdiv { 6 2 (8 }$
$\begin{array}{r}-56 \\ \hline 6 \\ \hline\end{array}$
(b) On dividing 17 by 5, we get
quotient $=3$ and remainder $=2$
$\therefore \quad \frac{17}{5}=3+\frac{2}{5}=3 \frac{2}{5}$
$5 \longdiv { 1 7 (3 }$
$\begin{array}{r}-15 \\ \hline 2\end{array}$
(c) On dividing 81 by 11, we get quotient $=7$ and remainder $=4$ $\therefore \quad \frac{81}{11}=7+\frac{4}{11}=7 \frac{4}{11}$
(d) On dividing 87 by 16, we get quotient $=5$ and remainder $=7$

$$
\therefore \quad \frac{87}{16}=5+\frac{7}{16}=5 \frac{7}{16}
$$

(e) On dividing 95 by 13, we get quotient $=7$ and remainder $=4$ $\therefore \quad \frac{95}{13}=7+\frac{4}{13}=7 \frac{4}{13}$
$1 6 \longdiv { 8 7 (5 }$

-80
7

$1 3 \longdiv { 9 5 (7 }$
$\begin{array}{r}-91 \\ \hline\end{array}$
$2 0 \longdiv { 1 1 7 (5 }$
$\begin{array}{r}-100 \\ -17 \\ \hline\end{array}$
$8 \longdiv { 1 0 1 (1 2 }$
$\frac{-8}{21}$
$-\frac{16}{5}$
(h) On dividing 103 by 12, we get quotient $=8$ and remainder $=7$

$$
\therefore \quad \frac{103}{12}=8+\frac{7}{12}=8 \frac{7}{12}
$$

$1 2 \longdiv { 1 0 3 } 8$
$\begin{array}{r}-96 \\ \hline 7 \\ \hline\end{array}$
7. (a) $\frac{3}{4}<1$
(b) $1>\frac{6}{7}$
(c) $\frac{6}{6} \sqsubseteq 1$
(d) $\frac{11}{5}>1$
8. (a) Let $P=\frac{2}{5}, \quad Q=\frac{3}{5}, \quad R=\frac{4}{5}, \quad S=\frac{8}{5}=1 \frac{3}{5}$

(b) Let $P=\frac{1}{4}, \quad Q=\frac{1}{2}, \quad R=\frac{3}{4}, \quad S=\frac{4}{4}=1$

(c) Let $P=\frac{1}{8}, \quad Q=\frac{2}{8}, \quad R=\frac{3}{8}, \quad S=\frac{5}{8}, \quad T=\frac{7}{8}$

EXERCISE 5C

1. (a) $\frac{3}{7}=\frac{3 \times 2}{7 \times 2}=\frac{3 \times 3}{7 \times 3}=\frac{3 \times 4}{7 \times 4}=\frac{3 \times 5}{7 \times 5}=\frac{3 \times 6}{7 \times 6}$

$$
\therefore \quad \frac{3}{7}=\frac{6}{14}=\frac{9}{21}=\frac{12}{28}=\frac{15}{35}=\frac{18}{42}
$$

(b) $\frac{2}{3}=\frac{2 \times 2}{3 \times 2}=\frac{2 \times 3}{3 \times 3}=\frac{2 \times 4}{3 \times 4}=\frac{2 \times 5}{3 \times 5}=\frac{2 \times 6}{3 \times 6}$

$$
\therefore \quad \frac{2}{3}=\frac{4}{6}=\frac{6}{9}=\frac{8}{12}=\frac{10}{15}=\frac{12}{18}
$$

(c) $\frac{4}{5}=\frac{4 \times 2}{5 \times 2}=\frac{4 \times 3}{5 \times 3}=\frac{4 \times 4}{5 \times 4}=\frac{4 \times 5}{5 \times 5}=\frac{4 \times 6}{5 \times 6}$

$$
\therefore \quad \frac{4}{5}=\frac{8}{10}=\frac{12}{15}=\frac{16}{20}=\frac{20}{25}=\frac{24}{30}
$$

(d) $\frac{5}{8}=\frac{5 \times 2}{8 \times 2}=\frac{5 \times 3}{8 \times 3}=\frac{5 \times 4}{8 \times 4}=\frac{5 \times 5}{8 \times 5}=\frac{5 \times 6}{8 \times 6}$

$$
\therefore \quad \frac{5}{8}=\frac{10}{16}=\frac{15}{24}=\frac{20}{32}=\frac{25}{40}=\frac{30}{48}
$$

(e) $\frac{5}{12}=\frac{5 \times 2}{12 \times 2}=\frac{5 \times 3}{12 \times 3}=\frac{5 \times 4}{12 \times 4}=\frac{5 \times 5}{12 \times 5}=\frac{5 \times 6}{12 \times 6}$

$$
\therefore \quad \frac{5}{12}=\frac{10}{24}=\frac{15}{36}=\frac{20}{48}=\frac{25}{60}=\frac{30}{72}
$$

(f) $\frac{6}{11}=\frac{6 \times 2}{11 \times 2}=\frac{6 \times 3}{11 \times 3}=\frac{6 \times 4}{11 \times 4}=\frac{6 \times 5}{11 \times 5}=\frac{6 \times 6}{11 \times 6}$

$$
\therefore \quad \frac{6}{11}=\frac{12}{22}=\frac{18}{33}=\frac{24}{44}=\frac{30}{55}=\frac{36}{66}
$$

(g) $\frac{7}{9}=\frac{7 \times 2}{9 \times 2}=\frac{7 \times 3}{9 \times 3}=\frac{7 \times 4}{9 \times 4}=\frac{7 \times 5}{9 \times 5}=\frac{7 \times 6}{9 \times 6}$

$$
\therefore \quad \frac{7}{9}=\frac{14}{18}=\frac{21}{27}=\frac{28}{36}=\frac{35}{45}=\frac{42}{54}
$$

(h) $\frac{7}{10}=\frac{7 \times 2}{10 \times 2}=\frac{7 \times 3}{10 \times 3}=\frac{7 \times 4}{10 \times 4}=\frac{7 \times 5}{10 \times 5}=\frac{7 \times 6}{10 \times 6}$

$$
\therefore \quad \frac{7}{10}=\frac{14}{20}=\frac{21}{30}=\frac{28}{40}=\frac{35}{50}=\frac{42}{60}
$$

2. (a) $\frac{2}{9} \gg \frac{14}{63}$
2×63 and 9×14
$\therefore \quad 126=126$
Hence, $\frac{2}{9}=\frac{14}{63}$
(c) $\frac{2}{3} \gg \frac{33}{22}$
2×22 and 3×33
$\therefore \quad 44<99$
Hence, $\frac{2}{3}<\frac{33}{22}$
(b) $\frac{1}{3}>\frac{9}{24}$
1×24 and 3×9
$\therefore \quad 24<27$
Hence, $\frac{1}{3}<\frac{9}{24}$
(d)

4×21 and 7×16
$\therefore \quad 84<112$
Hence, $\frac{4}{7}<\frac{16}{21}$
(e) $\frac{3}{8}>\frac{15}{40}$
3×40 and 8×15
(f) $\frac{5}{6}><\frac{20}{24}$
$\therefore \quad 120=120$
Hence, $\frac{3}{8}=\frac{15}{40}$
5×24 and 6×20
$\therefore \quad 120=120$
Hence, $\frac{5}{6}=\frac{20}{24}$
3. (a) $\frac{3}{5}=\frac{24}{\square}$

Clearly, $\quad 24=3 \times 8$
So, we multiply the denominator also by 8 .
$\therefore \quad \frac{3}{5}=\frac{3 \times 8}{5 \times 8}=\frac{24}{40}$
Hence, the required fraction is $\frac{24}{40}$.
(b) $\frac{3}{5}=\frac{\square}{30}$

Clearly, $\quad 30=5 \times 6$
So, we multiply the numerator also by 6 .
$\therefore \quad \frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}$
Hence, the required fraction is $\frac{18}{30}$.
4. (a) $\frac{5}{9}=\frac{35}{\square}$

Clearly,

$$
35=5 \times 7
$$

So, we multiply the denominator also by 7 .
$\therefore \quad \frac{5}{9}=\frac{5 \times 7}{9 \times 7}=\frac{35}{63}$
Hence, the required fraction is $\frac{35}{63}$.
(b) $\frac{5}{9}=\frac{\square}{54}$

Clearly, $\quad 54=9 \times 6$
So, we multiply the numerator also by 6 .

$$
\therefore \quad \frac{5}{9}=\frac{5 \times 6}{9 \times 6}=\frac{30}{54}
$$

Hence, the required fraction is $\frac{30}{54}$.
5. (a) $\frac{6}{11}=\frac{60}{\square}$

Clearly, $\quad 60=6 \times 10$
So, we multiply the denominator also by 10 .
$\therefore \quad \frac{6}{11}=\frac{6 \times 10}{11 \times 10}=\frac{60}{110}$
Hence, the required fraction is $\frac{60}{110}$.
(b) $\frac{6}{11}=\frac{\square}{77}$

Clearly,

$$
77=11 \times 7
$$

So, we multiply the numerator also by 7 .
$\therefore \quad \frac{6}{11}=\frac{6 \times 7}{11 \times 7}=\frac{42}{77}$
Hence, the required fraction is $\frac{42}{77}$.
6. (a) $\frac{36}{48}=\frac{\square}{4}$

Clearly, $\quad 4=48 \div 12$
So, we devide the numerator also by 12 .
$\therefore \quad \frac{36}{48}=\frac{36 \div 12}{48 \div 12}=\frac{3}{4}$
Hence, the required fraction is $\frac{3}{4}$.
(b) $\frac{36}{48}=\frac{9}{\square}$

Clearly, $\quad 9=36 \div 4$
So, we devide the denominator also by 4.
$\therefore \quad \frac{36}{48}=\frac{36 \div 4}{48 \div 4}=\frac{9}{12}$
Hence, the required fraction is $\frac{9}{12}$.
7. (a) $\frac{56}{70}=\frac{\square}{10}$

Clearly, $10=70 \div 7$
So, we multiply the numerator also by 6 .
$\therefore \quad \frac{56}{70}=\frac{56 \div 7}{70 \div 7}=\frac{8}{10}$
Hence, the required fraction is $\frac{8}{10}$.
(b) $\frac{56}{70}=\frac{4}{\square}$

Clearly, $\quad 4=56 \div 14$
So, we devide the denominator also by 14 .
$\therefore \quad \frac{56}{70}=\frac{56 \div 14}{70 \div 14}=\frac{4}{5}$
Hence, the required fraction is $\frac{4}{5}$.
8. (a) Here, numerator $=8$ and denominator $=15$

Factors of $8=1,2,4,8$
Factors of $15=1,3,5,15$
Common factor of 8 and 15 is 1 only.
\therefore HCF of 8 and $15=1$
Hence, $\frac{8}{15}$ is in the simplest form.
(b) Here, numerator $=8$ and denominator $=11$

Factors of $8=1,2,4,8$
Factors of $11=1,11$
Common factor of 8 and 11 is 1 only.
\therefore HCF of 8 and $11=1$
Hence, $\frac{8}{11}$ is in the simplest form.
(c) Here, numerator $=9$ and denominator $=14$

Factors of $9=1,3,9$
Factors of $14=1,2,7,14$
Common factor of 9 and 14 is 1 only.
\therefore HCF of 9 and $14=1$
Hence, $\frac{9}{14}$ is in the simplest form.
(d) Here, numerator $=21$ and denominator $=10$

Factors of $21=1,3,7,21$
Factors of $10=1,2,5,10$
Common factor of 21 and 10 is 1 only.
\therefore HCF of 21 and $10=1$
Hence, $\frac{21}{10}$ is in the simplest form.
9. (a) HCF of 48 and $60=2 \times 2 \times 3$

$$
=12
$$

$\therefore \quad \frac{48}{60}=\frac{48 \div 12}{60 \div 12}=\frac{4}{5}$

2	48,60
2	24,30
3	12,15
	$4, \quad 5$

(b) HCF of 9 and $15=3$
$\therefore \quad \frac{9}{15}=\frac{9 \div 3}{15 \div 3}=\frac{3}{5}$

3	9,15
	3,5

(c) HCF of 72 and $90=2 \times 3 \times 3$

$$
\begin{aligned}
& =18 \\
\therefore & \frac{72}{90}
\end{aligned}=\frac{72 \div 18}{90 \div 18}=\frac{4}{5}
$$

2	72,	90
3	36,	45
3	12,	15
	4,	5

(d) HCF of 84 and $98=2 \times 7$

$$
\begin{array}{rlrl}
& =14 \\
\therefore & \frac{84}{98} & =\frac{84 \div 14}{98 \div 14}=\frac{6}{7}
\end{array}
$$

2	84,	98
7	42,	49
	6,	7

10. (a) $\frac{3}{5}=\frac{3 \times 7}{5 \times 7}=\frac{21}{35}$
(b) $\frac{2}{7}=\frac{2 \times 4}{7 \times 4}=\frac{8}{28}$
(c) $\frac{5}{8}=\frac{5 \times 4}{8 \times 4}=\frac{20}{32}$
(d) $\frac{42}{54}=\frac{42 \div 6}{54 \div 6}=\frac{7}{9}$

EXERCISE 5D

1. Like fractions: Fractions having the same denominator are called like fractions.
Example : $\frac{3}{8}, \frac{4}{8}, \frac{5}{8}, \frac{2}{8}, \frac{7}{8}$.
Unlike fractions : Fractions having different denominator are called unlike fractions.
Example: $\frac{3}{7}, \frac{5}{8}, \frac{6}{11}, \frac{10}{19}, \frac{4}{5}$.
2. LCM of $5,10,15$ and $30=2 \times 3 \times 5$

$$
\begin{aligned}
\therefore \quad \frac{3}{5} & =\frac{3 \times 6}{5 \times 6}=\frac{18}{30}, \frac{7}{10}=\frac{7 \times 3}{10 \times 3}=\frac{21}{30}, \\
& \frac{8}{15}=\frac{8 \times 2}{15 \times 2}=\frac{16}{30}, \frac{11}{30}=\frac{11 \times 1}{30 \times 1}=\frac{11}{30}
\end{aligned}
$$

Hence, the required like fractions are $\frac{18}{30}, \frac{21}{30}, \frac{16}{30}$ and $\frac{11}{30}$.
3. (a) $\frac{3}{7}\left[\frac{6}{7}\right.$
(b) $\frac{8}{9} \square \frac{5}{9}$
(c) $\frac{9}{10}>\frac{7}{10}$
(d) $\frac{11}{20}<\frac{17}{20}$
4. (a) $\frac{4}{11} \measuredangle \frac{4}{9}$
(b) $\frac{3}{4} \square \frac{3}{5}$
(c) $\frac{7}{8}>\frac{7}{10}$
(d) $\frac{11}{14}>\frac{11}{15}$
5. (a) LCM of 8 and $6=2 \times 2 \times 2 \times 3=24$

Now, we convert each one of given fractions into an equivalent fraction having 24 as denominator.
$\therefore \quad \frac{3}{8}=\frac{3 \times 3}{8 \times 3}=\frac{9}{24}$ and $\frac{5}{6}=\frac{5 \times 4}{6 \times 4}=\frac{20}{24}$

2	8,	6
	4,	3
	2,	3
	1,	3
	1,	1

Clearly, $\quad \frac{9}{24}<\frac{20}{24}$
Hence, $\quad \frac{3}{8}<\frac{5}{6}$
(b) LCM of 3 and $9=3 \times 3=9$

Now, we convert each one of given fractions into an equivalent fraction having 9 as denominator.

3	3,9
	1,3
	1,1

$\therefore \quad \frac{2}{3}=\frac{2 \times 3}{3 \times 3}=\frac{6}{9}$ and $\frac{4}{9}=\frac{4 \times 1}{9 \times 1}=\frac{4}{9}$
Clearly,

$$
\begin{aligned}
& \frac{6}{9}>\frac{4}{9} \\
& \frac{2}{3}>\frac{4}{9}
\end{aligned}
$$

Hence,
(c) LCM of 5 and $7=5 \times 7$

$$
=35
$$

$=35$
Now, we convert each one of given fractions into an

equivalent fraction having 35 as denominator. | 5 | 5,7 |
| :--- | :--- |
| 7 | 1,7 |
| | 1,1 | $\therefore \quad \frac{4}{5}=\frac{4 \times 7}{5 \times 7}=\frac{28}{35}$ and $\frac{5}{7}=\frac{5 \times 5}{7 \times 5}=\frac{25}{35}$

Clearly, $\quad \frac{28}{35}>\frac{25}{35}$
Hence, $\quad \frac{4}{5}>\frac{5}{7}$
(d) LCM of 11 and $7=7 \times 11=77$

Now, we convert each one of given fractions into an equivalent fraction having 77 as denominator.
$\therefore \quad \frac{7}{11}=\frac{7 \times 7}{11 \times 7}=\frac{49}{77}$ and $\frac{6}{7}=\frac{6 \times 11}{7 \times 11}=\frac{66}{77}$

Clearly,

$$
\frac{49}{77}<\frac{66}{77}
$$

Hence,

$$
\frac{7}{11}<\frac{6}{7}
$$

(e) LCM of 6 and $11=2 \times 3 \times 11=66$

Now, we convert each one of given fractions into an equivalent fraction with denominator as 66 .
$\therefore \quad \frac{5}{6}=\frac{5 \times 11}{6 \times 11}=\frac{55}{66}$ and $\frac{9}{11}=\frac{9 \times 6}{11 \times 6}=\frac{54}{66}$

+2	, 11
2	6,11
	3,11
	1,1

Clearly, $\quad \frac{55}{66}>\frac{54}{66}$
Hence,

$$
\frac{5}{6}>\frac{9}{11}
$$

(f) LCM of 4 and $6=2 \times 2 \times 3=12$

Now, we convert each one of given fractions into an equivalent fraction having 12 as denominator.
$\therefore \quad \frac{3}{4}=\frac{3 \times 3}{4 \times 3}=\frac{9}{12}$ and $\frac{5}{6}=\frac{5 \times 2}{6 \times 2}=\frac{10}{12}$

2	4,6
	2,3
	1,3
	1,1

Clearly, $\quad \frac{9}{12}<\frac{10}{12}$
Hence,

$$
\frac{3}{4}<\frac{5}{6}
$$

(g) LCM of 5 and $10=2 \times 5=10$

Now, we convert each one of given fractions into an equivalent fraction having 10 as denominator.
$\therefore \quad \frac{4}{5}=\frac{4 \times 2}{5 \times 2}=\frac{8}{10}$ and $\frac{7}{10}=\frac{7 \times 1}{10 \times 1}=\frac{7}{10}$
Clearly, $\quad \frac{8}{10}>\frac{7}{10}$
Hence, $\quad \frac{4}{5}>\frac{7}{10}$
(h) LCM of 8 and $12=2 \times 2 \times 2 \times 3=24$

Now, we convert each one of given fractions into an equivalent fraction having 24 as denominator.
$\therefore \quad \frac{5}{8}=\frac{5 \times 3}{8 \times 3}=\frac{15}{24}$ and $\frac{7}{12}=\frac{7 \times 2}{12 \times 2}=\frac{14}{24}$
Clearly,

$$
\frac{15}{24}>\frac{14}{24}
$$

Hence,

$$
\frac{5}{8}>\frac{7}{12}
$$

2	8,	12
2	4,	6
2	2,	3
3	1,	3
	1,	1

(i) LCM of 8 and $10=2 \times 2 \times 2 \times 5=40$

Now, we convert each one of given fractions into a equivalent fraction having 40 as denominator.
$\therefore \quad \frac{7}{8}=\frac{7 \times 5}{8 \times 5}=\frac{35}{40}$ and $\frac{9}{10}=\frac{9 \times 4}{10 \times 4}=\frac{36}{40}$
Clearly, $\quad \frac{35}{40}<\frac{36}{40}$

2	8,	10
	4,	5
	2,	5
	1,	5
	1,	1

Hence, $\quad \frac{7}{8}<\frac{9}{10}$
(j) LCM of 13 and $4=2 \times 2 \times 13=52$

Now, we convert each one of given fractions into an equivalent fraction having 52 as denominator.
$\therefore \quad \frac{6}{13}=\frac{6 \times 4}{13 \times 4}=\frac{24}{52}$ and $\frac{3}{4}=\frac{3 \times 13}{4 \times 13}=\frac{39}{52}$

1	13,
2	13,
	13,
	13,
	1,1

Clearly, $\quad \frac{24}{52}<\frac{39}{52}$
Hence, $\quad \frac{6}{13}<\frac{3}{4}$
(k) LCM of 9 and $6=2 \times 3 \times 3=18$

Now, we convert each one of the fractions into an equivalent fraction having 18 as denominator.
$\therefore \quad \frac{4}{9}=\frac{4 \times 2}{9 \times 2}=\frac{8}{18}$ and $\frac{5}{6}=\frac{5 \times 3}{6 \times 3}=\frac{15}{18}$

Clearly, $\quad \frac{8}{18}<\frac{15}{18}$
Hence,

$$
\frac{4}{9}<\frac{5}{6}
$$

(1) LCM of 12 and $15=2 \times 2 \times 3 \times 5=60$

Now, we convert each one of given fractions into an equivalent fraction having 60 as denominator.
$\therefore \quad \frac{11}{12}=\frac{11 \times 5}{12 \times 5}=\frac{55}{60}$ and $\frac{13}{15}=\frac{13 \times 4}{15 \times 4}=\frac{52}{60}$

2	12,15
2	6,15
3	3,15
5	$1, \quad 5$
	$1, \quad 1$

Clearly,

$$
\frac{55}{60}>\frac{52}{60}
$$

Hence,

$$
\frac{11}{12}>\frac{13}{15}
$$

6. (a) LCM of $2,4,6$ and $8=2 \times 2 \times 2 \times 3=24$

So, we convert each of the given fractions into an equivalent fraction with denominator 24 .
$\therefore \quad \frac{1}{2}=\frac{1 \times 12}{2 \times 12}=\frac{12}{24} ; \frac{3}{4}=\frac{3 \times 6}{4 \times 6}=\frac{18}{24}$;

2	$2,4,6,8$
	$1,2,3,4$
	$1,1,3,2$
	$1,1,3,1$
	$1,1,1,1$

$$
\frac{5}{6}=\frac{5 \times 4}{6 \times 4}=\frac{20}{24} ; \frac{7}{8}=\frac{7 \times 3}{8 \times 3}=\frac{21}{24}
$$

Clearly, $\quad \frac{12}{18}<\frac{18}{24}<\frac{20}{24}<\frac{21}{24}$
$\therefore \quad \frac{1}{2}<\frac{3}{4}<\frac{5}{6}<\frac{7}{8}$
Hence, the given fractions in ascending order are $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}$.
(b) LCM of $3,6,9$ and $18=2 \times 3 \times 3=18$

So, we convert each of the given fractions into an equivalent fraction with denominator 18 .

$$
\begin{array}{ll}
\therefore \quad & \frac{2}{3}=\frac{2 \times 6}{3 \times 6}=\frac{12}{18} ; \frac{5}{6}=\frac{5 \times 3}{6 \times 3}=\frac{15}{18} ; \\
& \frac{7}{9}=\frac{7 \times 2}{9 \times 2}=\frac{14}{18} ; \frac{11}{18}=\frac{11 \times 1}{18 \times 1}=\frac{11}{18}
\end{array}
$$

Clearly, $\quad \frac{11}{18}<\frac{12}{18}<\frac{14}{18}<\frac{15}{18}$
$\therefore \quad \frac{11}{18}<\frac{2}{3}<\frac{7}{9}<\frac{5}{6}$
Hence, the given fractions in ascending order are $\frac{11}{18}, \frac{2}{3}, \frac{7}{9}, \frac{5}{6}$.
(c) LCM of $4,8,16$ and $32=2 \times 2 \times 2 \times 2 \times 2=32$

So, we convert each of the given fractions into an equivalent fraction with denominator 32 .
$\therefore \quad \frac{3}{4}=\frac{3 \times 8}{4 \times 8}=\frac{24}{32} ; \frac{7}{8}=\frac{7 \times 4}{8 \times 4}=\frac{28}{32}$;

$$
\frac{11}{16}=\frac{11 \times 2}{16 \times 2}=\frac{22}{32} ; \frac{23}{32}=\frac{23 \times 1}{32 \times 1}=\frac{23}{32}
$$

2	$4,8,16$,	32	
2	2,4,	8,	16
2	1,	2,	4,
2	1,1,	2,	4
2	1,1,	1,	2
	1,	1,	1,

Clearly, $\quad \frac{22}{32}<\frac{23}{32}<\frac{24}{32}<\frac{28}{32}$
$\therefore \quad \frac{11}{16}<\frac{23}{32}<\frac{3}{4}<\frac{7}{8}$
Hence, the given fractions in ascending order are $\frac{11}{16}, \frac{23}{32}, \frac{3}{4}, \frac{7}{8}$.
7. (a) LCM of $4,8,12$ and $24=2 \times 2 \times 2 \times 3=24$

So, we convert each of the given fractions into an equivalent fraction with denominator 24 .

$$
\begin{aligned}
\therefore & \frac{3}{4}=\frac{3 \times 6}{4 \times 6}=\frac{18}{24} ; \frac{5}{8}=\frac{5 \times 3}{8 \times 3}=\frac{15}{24} ; \\
& \frac{11}{12}=\frac{11 \times 2}{12 \times 2}=\frac{22}{24} ; \frac{17}{24}=\frac{17 \times 1}{24 \times 1}=\frac{17}{24}
\end{aligned}
$$

Clearly,

$$
\frac{22}{24}>\frac{18}{24}>\frac{17}{24}>\frac{15}{24}
$$

$$
\therefore \quad \frac{11}{12}>\frac{3}{4}>\frac{17}{24}>\frac{5}{8}
$$

Hence, the decending order of the given fractions is $\frac{11}{12}, \frac{3}{4}, \frac{17}{24}, \frac{5}{8}$.
(b) LCM of $9,12,18,36=2 \times 2 \times 3 \times 3=36$

So, we convert each of the given fractions into an equivalent fraction with denominator 36 .

$$
\begin{aligned}
\therefore \quad \frac{7}{9} & =\frac{7 \times 4}{9 \times 4}=\frac{28}{36} ; \frac{5}{12}=\frac{5 \times 3}{12 \times 3}=\frac{15}{36} ; \\
\frac{11}{18} & =\frac{11 \times 2}{18 \times 2}=\frac{22}{36} ; \frac{17}{36}=\frac{17 \times 1}{36 \times 1}=\frac{17}{36}
\end{aligned}
$$

$\left.\begin{array}{l|lll}2 & 9, & 12, & 18, \\ \hline & 9, & 6, & 9, \\ \hline & 9, & 3, & 9, \\ \hline & 3, & 1, & 9, \\ \hline & 1, & 1, & 1,\end{array}\right]$

Clearly, $\quad \frac{28}{36}>\frac{22}{36}>\frac{17}{36}>\frac{15}{36}$
$\therefore \quad \frac{7}{9}>\frac{11}{18}>\frac{17}{36}>\frac{5}{12}$
Hence, the decending order of the given fractions is $\frac{7}{9}, \frac{11}{18}, \frac{17}{36}, \frac{5}{12}$.
(c) LCM of $7,14,21$ and $42=2 \times 3 \times 7=42$

So, we convert each of the given fractions into an equivalent fraction with denominator 42 .
$\therefore \quad \frac{5}{7}=\frac{5 \times 6}{7 \times 6}=\frac{30}{42} ; \frac{9}{14}=\frac{9 \times 3}{14 \times 3}=\frac{27}{42}$;

2	7,14,	21,
3	7,	7,
7	1,	21
7	7,	7,
	1,	1,
	1,	1

$$
\frac{17}{21}=\frac{17 \times 2}{21 \times 2}=\frac{34}{42} ; \frac{31}{42}=\frac{31 \times 1}{42 \times 1}=\frac{31}{42}
$$

Clearly,
$\frac{34}{42}>\frac{31}{42}>\frac{30}{42}>\frac{27}{42}$
$\therefore \quad \frac{17}{21}>\frac{31}{42}>\frac{5}{7}>\frac{9}{14}$
Hence, the decending order of the given fractions is $\frac{17}{21}, \frac{31}{42}, \frac{5}{7}, \frac{9}{14}$.
8. Part of book read by Manju $=\frac{30}{100}=\frac{3}{10}$

Part of book read by Nidhi $=\frac{2}{5}=\frac{2 \times 2}{5 \times 2}=\frac{4}{10}$
(Converting into equivalent fraction with denominator 10)
Clearly, $\quad \frac{3}{10}<\frac{4}{10}$
$\therefore \quad \frac{3}{10}<\frac{2}{5}$
Hence, Nidhi read more part of book.
9. Time taken by Rajat $=\frac{2}{3}$ hours

Time taken by Mohit $=\frac{3}{4}$ hours
Converting the given fractions into equivalent fraction,

$$
\frac{2}{3}=\frac{2 \times 4}{3 \times 4}=\frac{8}{12} ; \frac{3}{4}=\frac{3 \times 3}{4 \times 3}=\frac{9}{12} \quad(\text { LCM of } 3 \text { and } 4=12)
$$

Clearly, $\quad \frac{8}{12}<\frac{9}{12}$
$\therefore \quad \frac{2}{3}<\frac{3}{4}$
Hence, Mohit exercised for longer time.
10. Fraction of students passed in VI $\mathrm{A}=\frac{20}{25}=\frac{4}{5}$

Fraction of students passed in VI B $=\frac{24}{30}=\frac{4}{5}$
Clearly, $\quad \frac{20}{25}=\frac{24}{30}$
Hence, both sections gave the same result.

EXERCISE 5E

1. (a) $\frac{4}{9}+\frac{8}{9}=\frac{4+8}{9}=\frac{12}{9}=\frac{12 \div 3}{9 \div 3}=\frac{4}{3}=1 \frac{1}{3}$
(b) $1 \frac{3}{5}+2 \frac{4}{5}=\frac{8}{5}+\frac{14}{5}=\frac{8+14}{5}=\frac{22}{5}=4 \frac{2}{5}$
(c) $\frac{5}{8}+\frac{1}{8}=\frac{5+1}{8}=\frac{6}{8}=\frac{6 \div 2}{8 \div 2}=\frac{3}{4}$
(d) LCM of 12 and $16=48$

Now, $\frac{7}{12}=\frac{7 \times 4}{12 \times 4}=\frac{28}{48} ; \frac{9}{16}=\frac{9 \times 3}{16 \times 3}=\frac{27}{48}$

$$
\begin{aligned}
\therefore \quad \frac{7}{12}+\frac{9}{16} & =\frac{28}{48}+\frac{27}{48} \\
& =\frac{28+27}{48}=\frac{55}{48}=1 \frac{7}{48}
\end{aligned}
$$

2	12,	16
	6,	8
	3,	4
	3,	2
	3,	1
	1,	1

(e) LCM of 9 and $6=2 \times 3 \times 3=18$

Now, $\quad \frac{2}{9}=\frac{2 \times 2}{9 \times 2}=\frac{4}{18} ; \frac{5}{6}=\frac{5 \times 3}{6 \times 3}=\frac{15}{18}$
$\therefore \quad \frac{2}{9}+\frac{5}{6}=\frac{4}{18}+\frac{15}{18}=\frac{4+15}{18}=\frac{19}{18}=1 \frac{1}{18}$

2	9,6
3	9,3
3	3,1
	1,1

(f) $2 \frac{3}{4}+5 \frac{5}{6}=\frac{11}{4}+\frac{35}{6}$

LCM of 4 and $6=2 \times 2 \times 3=12$
$\therefore \quad \frac{11}{4}=\frac{11 \times 3}{4 \times 3}=\frac{33}{12} ; \frac{35}{6}=\frac{35 \times 2}{6 \times 2}=\frac{70}{12}$

2	4,6
	2,3
	1,3
	1,1

$$
\therefore \quad 2 \frac{3}{4}+5 \frac{5}{6}=\frac{33}{12}+\frac{70}{12}=\frac{33+70}{12}=\frac{103}{12}=8 \frac{7}{12}
$$

(g) $2 \frac{7}{10}+3 \frac{8}{15}=\frac{27}{10}+\frac{53}{15}$

LCM of 10 and $15=2 \times 3 \times 5=30$
$\therefore \quad \frac{27}{10}=\frac{27 \times 3}{10 \times 3}=\frac{81}{30} ; \frac{53}{15}=\frac{53 \times 2}{15 \times 2}=\frac{106}{30}$
$\therefore \quad 2 \frac{7}{10}+3 \frac{8}{15}=\frac{81}{30}+\frac{106}{30}=\frac{81+106}{30}=\frac{187}{30}=6 \frac{7}{30}$

2	10,15
3	5,15
5	5,
	$1, \quad 1$

(h) $3 \frac{2}{3}+1 \frac{5}{6}+2=\frac{11}{3}+\frac{11}{6}+2$

LCM of 3 and $6=6$

$$
\begin{aligned}
& \therefore \quad \frac{11}{3}=\frac{11 \times 2}{3 \times 2}=\frac{22}{6} ; \frac{11}{6}=\frac{11 \times 1}{6 \times 1}=\frac{11}{6} ; \frac{2}{1}=\frac{2 \times 6}{1 \times 6}=\frac{12}{6} \\
& \therefore \quad 3 \frac{2}{3}+1 \frac{5}{6}+2=\frac{22}{6}+\frac{11}{6}+\frac{12}{6} \\
& \\
& =\frac{22+11+12}{6}=\frac{45}{6}=\frac{15}{2}=7 \frac{1}{2}
\end{aligned}
$$

(i) $3 \frac{1}{3}+4 \frac{1}{4}+6 \frac{1}{6}=\frac{10}{3}+\frac{17}{4}+\frac{37}{6}$

LCM of 3,4 and $6=2 \times 2 \times 3=12$

$$
\begin{array}{rlrl}
\therefore \quad \frac{10}{3}=\frac{10 \times 4}{3 \times 4} & =\frac{40}{12} ; \frac{17}{4}=\frac{17 \times 3}{4 \times 3}=\frac{51}{12} ; & & 2 \\
\frac{37}{6}=\frac{37 \times 2}{6 \times 2} & =\frac{74}{12} & & 3,2,3 \\
\hline & & 3 \frac{1,3}{3}+4 \frac{1}{4}+6 \frac{1}{6} & =\frac{40}{12}+\frac{51}{12}+\frac{74}{12} \\
& =\frac{40+51+74}{12}=\frac{165}{12}=\frac{55}{4}=13 \frac{3}{4} &
\end{array}
$$

(j) $2+\frac{3}{4}+1 \frac{5}{8}+3 \frac{7}{16}=2+\frac{3}{4}+\frac{13}{8}+\frac{55}{16}$

LCM of 4,8 and $16=2 \times 2 \times 2 \times 2=16$

$$
\begin{aligned}
\therefore \quad & \frac{2}{1}=\frac{2 \times 16}{1 \times 16}=\frac{32}{16} ; \frac{3}{4}=\frac{3 \times 4}{4 \times 4}=\frac{12}{16} ; \\
& \frac{13}{8}=\frac{13 \times 2}{8 \times 2}=\frac{26}{16} ; \frac{55}{16}=\frac{55 \times 1}{16 \times 1}=\frac{55}{16}
\end{aligned}
$$

2	4,8,	16
	2,4,	8
	1,	2,
	1,	1,
	1,	1,

$$
\begin{aligned}
\therefore 2+\frac{3}{4}+1 \frac{5}{8}+3 \frac{7}{16} & =\frac{32}{16}+\frac{12}{16}+\frac{26}{16}+\frac{55}{16} \\
& =\frac{32+12+26+55}{16}=\frac{125}{16}=7 \frac{13}{16}
\end{aligned}
$$

(k) $2 \frac{1}{3}+1 \frac{1}{4}+2 \frac{5}{6}+3 \frac{7}{12}=\frac{7}{3}+\frac{5}{4}+\frac{17}{6}+\frac{43}{12}$

LCM of $3,4,6$ and $12=2 \times 2 \times 3=12$

$$
\begin{gathered}
\therefore \quad \frac{7}{3}=\frac{7 \times 4}{3 \times 4}=\frac{28}{12} ; \frac{5}{4}=\frac{5 \times 3}{4 \times 3}=\frac{15}{12} ; \\
\frac{17}{6}=\frac{17 \times 2}{6 \times 2}=\frac{34}{12} ; \frac{43}{12}=\frac{43 \times 1}{12 \times 1}=\frac{43}{12} \\
\therefore 2 \frac{1}{3}+1 \frac{1}{4}+2 \frac{5}{6}+3 \frac{7}{12}=\frac{28}{12}+\frac{15}{12}+\frac{34}{12}+\frac{43}{12} \\
\\
=\frac{28+15+34+43}{12}=\frac{120}{12}=10
\end{gathered}
$$

(l) $\frac{2}{3}+3 \frac{1}{6}+4 \frac{2}{9}+2 \frac{5}{18}=\frac{2}{3}+\frac{19}{6}+\frac{38}{9}+\frac{41}{18}$

LCM of $3,6,9$ and $18=2 \times 3 \times 3=18$

$$
\begin{aligned}
\therefore & \frac{2}{3}=\frac{2 \times 6}{3 \times 6}=\frac{12}{18} ; \frac{19}{6}=\frac{19 \times 3}{6 \times 3}=\frac{57}{18} ; \\
& \frac{38}{9}=\frac{38 \times 2}{9 \times 2}=\frac{76}{18} ; \frac{41}{18}=\frac{41 \times 1}{18 \times 1}=\frac{41}{18}
\end{aligned}
$$

2	$3,6,9,18$	
	$3,3,9$,	9
	$1,1,3$,	3
	$1,1,1$,	1

$$
\begin{aligned}
\therefore \frac{2}{3}+3 \frac{1}{6}+4 \frac{2}{9}+2 \frac{5}{18} & =\frac{12}{18}+\frac{57}{18}+\frac{76}{18}+\frac{41}{18} \\
& =\frac{12+57+76+41}{18}=\frac{186}{18}=\frac{93}{9}=\frac{31}{3}=10 \frac{1}{3}
\end{aligned}
$$

2. Cost of note-book $=$ ` $3 \frac{2}{5}$

Cost of pen $=` 2 \frac{7}{10}$
\therefore Total cost of both articles $=^{\prime}\left(3 \frac{2}{5}+2 \frac{7}{10}\right)$

$$
\begin{aligned}
& =\left(\frac{17}{5}+\frac{27}{10}\right)='\left(\frac{17 \times 2}{5 \times 2}+\frac{27}{10}\right) \\
& =\left(\frac{34}{10}+\frac{27}{10}\right)='\left(\frac{34+27}{10}\right)=\backslash \frac{61}{10}=` 6 \frac{1}{10}
\end{aligned}
$$

Hence, the cost of both articles is ` $6 \frac{1}{10}$.
3. Length of cloth for Kurta $=4 \frac{1}{2} \mathrm{~m}$

Length of cloth for Pyjamas $=2 \frac{2}{3} \mathrm{~m}$

$$
\begin{aligned}
\text { Total length of cloth } & =\left(4 \frac{1}{2}+2 \frac{2}{3}\right) \mathrm{m} \\
& =\left(\frac{9}{2}+\frac{8}{3}\right) \mathrm{m}=\left(\frac{9 \times 3}{2 \times 3}+\frac{8 \times 2}{3 \times 2}\right) \mathrm{m} \\
& =\left(\frac{27}{6}+\frac{16}{6}\right) \mathrm{m}=\frac{27+16}{6} \mathrm{~m}=\frac{43}{6} \mathrm{~m}=7 \frac{1}{6} \mathrm{~m}
\end{aligned}
$$

Hence, he purchase $7 \frac{1}{6} \mathrm{~m}$ long cloth.
4. Weight of empty gas cylinder $=16 \frac{4}{5} \mathrm{~kg}$

Weight of gas $=14 \frac{2}{3} \mathrm{~kg}$
Total weight of the cylinder filled with gas $=\left(16 \frac{4}{5}+14 \frac{2}{3}\right) \mathrm{kg}$

$$
\begin{aligned}
& =\left(\frac{84}{5}+\frac{44}{3}\right) \mathrm{kg} \\
& =\left(\frac{84 \times 3}{5 \times 3}+\frac{44 \times 5}{3 \times 5}\right) \mathrm{kg} \\
& =\left(\frac{252}{15}+\frac{220}{15}\right) \mathrm{kg} \\
& =\frac{252+220}{15} \mathrm{~kg} \\
& =\frac{472}{15} \mathrm{~kg}=31 \frac{7}{15} \mathrm{~kg}
\end{aligned}
$$

Hence, the weight of the cylinder filled with gas is $31 \frac{7}{15} \mathrm{~kg}$.
5. Distance covered by auto-rickshaw $=4 \frac{3}{4} \mathrm{~km}$

Distance covered by foot $=1 \frac{1}{2} \mathrm{~km}$

Distance covered by Mohan = Distance between his house and school

$$
\begin{aligned}
& =\left(4 \frac{3}{4}+1 \frac{1}{2}\right) \mathrm{km}=\left(\frac{19}{4}+\frac{3}{2}\right) \mathrm{km} \\
& =\left(\frac{19}{4}+\frac{3 \times 2}{2 \times 2}\right) \mathrm{km}=\left(\frac{19}{4}+\frac{6}{4}\right) \mathrm{km} \\
& =\frac{19+6}{4} \mathrm{~km}=\frac{19+6}{4} \mathrm{~km} \\
& =\frac{25}{4} \mathrm{~km}=6 \frac{1}{4} \mathrm{~km}
\end{aligned}
$$

Hence, Distance of house from the school is $6 \frac{1}{4} \mathrm{~km}$.

EXERCISE 5F

1. (a) $\frac{7}{12}-\frac{5}{12}=\frac{7-5}{12}=\frac{2}{12}=\frac{1}{6}$
(b) $4 \frac{3}{7}-2 \frac{4}{7}=\frac{31}{7}-\frac{18}{7}=\frac{31-18}{7}=\frac{13}{7}=1 \frac{6}{7}$
(c) $\frac{1}{2}-\frac{3}{8}=\frac{1 \times 4}{2 \times 4}-\frac{3}{8}=\frac{4}{8}-\frac{3}{8}=\frac{4-3}{8}=\frac{1}{8}$
(d) LCM of 6 and $9=2 \times 3 \times 3=18$

$$
\begin{aligned}
& \frac{5}{6} & =\frac{5 \times 3}{6 \times 3}=\frac{15}{18} \text { and } \frac{4}{9}=\frac{4 \times 2}{9 \times 2}=\frac{8}{18} \\
\therefore & \frac{5}{6}-\frac{4}{9} & =\frac{15}{18}-\frac{8}{18}=\frac{15-8}{18}=\frac{7}{18}
\end{aligned}
$$

2	6,9
3	3,9
3	1,3
	1,1

(e) $3 \frac{5}{8}-2 \frac{5}{12}=\frac{29}{8}-\frac{29}{12}$

$$
\text { LCM of } 8 \text { and } 12=2 \times 2 \times 2 \times 3=24
$$

$$
\frac{29}{8}=\frac{29 \times 3}{8 \times 3}=\frac{87}{24} \text { and } \frac{29}{12}=\frac{29 \times 2}{12 \times 2}=\frac{58}{24}
$$

$$
\therefore \quad 3 \frac{5}{8}-2 \frac{5}{12}=\frac{87}{24}-\frac{58}{24}=\frac{87-58}{24}=\frac{29}{24}=1 \frac{5}{24}
$$

| 2 | 8, | 12 |
| :--- | :--- | :--- | :--- |
| | 4, | 6 |
| | 2, | 3 |
| | 1, | 3 |
| | 1, | 1 |

(f) $2 \frac{3}{10}-1 \frac{7}{15}=\frac{23}{10}-\frac{22}{15}$

LCM of 10 and $15=2 \times 3 \times 5=30$

$$
\frac{23}{10}=\frac{23 \times 3}{10 \times 3}=\frac{69}{30} \text { and } \frac{22}{15}=\frac{22 \times 2}{15 \times 2}=\frac{44}{30}
$$

$$
\therefore \quad 2 \frac{3}{10}-1 \frac{7}{15}=\frac{69}{30}-\frac{44}{30}=\frac{69-44}{30}=\frac{25}{30}=\frac{5}{6}
$$

(g) $6 \frac{2}{3}-3 \frac{3}{4}=\frac{20}{3}-\frac{15}{4}$

LCM of 3 and $4=4 \times 3=12$ (Since, 3 and 4 are co-primes)

$$
\begin{aligned}
\frac{20}{3} & =\frac{20 \times 4}{3 \times 4}=\frac{80}{12} \text { and } \frac{15}{4}=\frac{15 \times 3}{4 \times 3}=\frac{45}{12} \\
\therefore \quad 6 \frac{2}{3}-3 \frac{3}{4} & =\frac{80}{12}-\frac{45}{12}=\frac{80-45}{12}=\frac{35}{12}=2 \frac{11}{12}
\end{aligned}
$$

(h) $10-6 \frac{3}{8}=\frac{10}{1}-\frac{51}{8}$

$$
\begin{aligned}
& \frac{10}{1}=\frac{10 \times 8}{1 \times 8}=\frac{80}{8} \quad(\text { Since, } 1 \text { and } 8 \text { are co-primes }) \\
\therefore & 10-6 \frac{3}{8}=\frac{80}{8}-\frac{51}{8}=\frac{80-51}{8}=\frac{29}{8}=3 \frac{5}{8}
\end{aligned}
$$

2	1,8
2	1,4
2	1,2
	1,1

(i) $7-5 \frac{2}{3}=\frac{7}{1}-\frac{17}{3}$

$$
\begin{aligned}
& \frac{7}{1}=\frac{7 \times 3}{1 \times 3}=\frac{21}{3} \\
\therefore & 7-5 \frac{2}{3}=\frac{21}{3}-\frac{17}{3}=\frac{21-17}{3}=\frac{4}{3}=1 \frac{1}{3}
\end{aligned}
$$

2. (a) $2+\frac{11}{15}-\frac{5}{9}$

LCM of 15 and $9=3 \times 3 \times 5=45$

$$
\begin{aligned}
\therefore \quad \frac{2}{1} & =\frac{2 \times 45}{1 \times 45}=\frac{90}{45} ; \frac{11}{15}=\frac{11 \times 3}{15 \times 3}=\frac{33}{45} ; \\
\frac{5}{9} & =\frac{5 \times 5}{9 \times 5}=\frac{25}{45} \\
\therefore \quad 2+\frac{11}{15}-\frac{5}{9} & =\frac{90}{45}+\frac{33}{45}-\frac{25}{45}=\frac{90+33-25}{45} \\
& =\frac{123-25}{45}=\frac{98}{45}=2 \frac{8}{45}
\end{aligned}
$$

(b) $\frac{5}{6}-\frac{4}{9}+\frac{2}{3}$

LCM of 6,9 and $3=2 \times 3 \times 3=18$

$$
\begin{aligned}
\therefore \quad \frac{5}{6} & =\frac{5 \times 3}{6 \times 3}=\frac{15}{18} ; \frac{4}{9}=\frac{4 \times 2}{9 \times 2}=\frac{8}{18} ; \\
\frac{2}{3} & =\frac{2 \times 6}{3 \times 6}=\frac{12}{18}
\end{aligned}
$$

2	$6,9,3$
	$3,9,3$
	$1,3,1$
	$1,1,1$

$$
\begin{aligned}
\therefore \quad \frac{5}{6}-\frac{4}{9}+\frac{2}{3} & =\frac{15}{18}-\frac{8}{18}+\frac{12}{18} \\
& =\frac{15-8+12}{18}=\frac{7+12}{18}=\frac{19}{18}=1 \frac{1}{18}
\end{aligned}
$$

(c) $\frac{5}{8}+\frac{3}{4}-\frac{7}{12}$

LCM of 8,4 and $12=2 \times 2 \times 2 \times 3=24$

$$
\begin{aligned}
\therefore \quad \frac{5}{8} & =\frac{5 \times 3}{8 \times 3}=\frac{15}{24} ; \frac{3}{4}=\frac{3 \times 6}{4 \times 6}=\frac{18}{24} ; \\
\frac{7}{12} & =\frac{7 \times 2}{12 \times 2}=\frac{14}{24}
\end{aligned}
$$

2	$8,4,12$	
2	4,2,	6
2	2,1,	3
3	1,1,	3
	1,1,	1

$$
\begin{aligned}
\therefore \frac{5}{8}+\frac{3}{4}-\frac{7}{12} & =\frac{15}{24}+\frac{18}{24}-\frac{14}{24} \\
& =\frac{15+18-14}{24}=\frac{33-14}{24}=\frac{19}{24}
\end{aligned}
$$

(d) $8 \frac{5}{6}-3 \frac{3}{8}+2 \frac{7}{12}=\frac{53}{6}-\frac{27}{8}+\frac{31}{12}$

LCM of 6,8 and $12=2 \times 2 \times 2 \times 3=24$

$$
\begin{array}{r}
\therefore \quad \frac{53}{6}=\frac{53 \times 4}{6 \times 4}=\frac{212}{24} ; \frac{27}{8}=\frac{27 \times 3}{8 \times 3}=\frac{81}{24} ; \\
\frac{31}{12}=\frac{31 \times 2}{12 \times 2}=\frac{62}{24} \\
\therefore 8 \frac{5}{6}-3 \frac{3}{8}+2 \frac{7}{12}
\end{array} \begin{array}{r}
\frac{212}{24}-\frac{81}{24}+\frac{62}{24} \\
\\
=\frac{212-81+62}{24}=\frac{131+62}{24}=\frac{193}{24}=8 \frac{1}{24}
\end{array}
$$

2	6,	8,	12
	3,	4,	6
	3,	2,	3
	3,	1,	3
	1,	1,	1

(e) $5 \frac{3}{4}-4 \frac{5}{12}+3 \frac{1}{6}=\frac{23}{4}-\frac{53}{12}+\frac{19}{6}$

LCM of 4,12 and $6=2 \times 2 \times 3=12$

$$
\begin{array}{r}
\therefore \quad \frac{23}{4}=\frac{23 \times 3}{4 \times 3}=\frac{69}{12} ; \frac{19}{6}=\frac{19 \times 2}{6 \times 2}=\frac{38}{12} \\
\therefore \quad 5 \frac{3}{4}-4 \frac{5}{12}+3 \frac{1}{6}=\frac{69}{12}-\frac{53}{12}+\frac{38}{12}=\frac{69-53+38}{12} \\
\\
=\frac{16+38}{12}=\frac{54}{12}=\frac{9}{2}=4 \frac{1}{2}
\end{array}
$$

(f) $6 \frac{1}{6}-5 \frac{1}{5}+3 \frac{1}{3}=\frac{37}{6}-\frac{26}{5}+\frac{10}{3}$

LCM of 6,5 and $3=2 \times 3 \times 5=30$

$$
\begin{aligned}
\therefore \quad \frac{37}{6} & =\frac{37 \times 5}{6 \times 5}=\frac{185}{30} ; \frac{26}{5}=\frac{26 \times 6}{5 \times 6}=\frac{156}{30} \\
\frac{10}{3} & =\frac{10 \times 10}{3 \times 10}=\frac{100}{30} \\
\therefore \quad 6 \frac{1}{6}-5 \frac{1}{5}+3 \frac{1}{3} & =\frac{185}{30}-\frac{156}{30}+\frac{100}{30} \\
& =\frac{185-156+100}{30}=\frac{29+100}{30} \\
& =\frac{129}{30}=\frac{43}{10}=4 \frac{3}{10}
\end{aligned}
$$

(g) $8-3 \frac{1}{2}-2 \frac{1}{4}=\frac{8}{1}-\frac{7}{2}-\frac{9}{4}$

LCM of 2 and $4=2 \times 2=4$

$$
\begin{aligned}
\therefore \quad \frac{8}{1}=\frac{8 \times 4}{1 \times 4} & =\frac{32}{4} ; \frac{7}{2}=\frac{7 \times 2}{2 \times 2}=\frac{14}{4} \\
\therefore \quad 8-3 \frac{1}{2}-2 \frac{1}{4} & =\frac{32}{4}-\frac{14}{4}-\frac{9}{4}=\frac{32-14-9}{4} \\
& =\frac{32-23}{4}=\frac{9}{4}=2 \frac{1}{4}
\end{aligned}
$$

(h) $3+1 \frac{1}{5}+\frac{2}{3}-\frac{7}{15}=\frac{3}{1}+\frac{6}{5}+\frac{2}{3}-\frac{7}{15}$

$$
\begin{aligned}
& \text { LCM of } 5,3 \text { and } 15=3 \times 5=15 \\
& \left.\therefore \quad \begin{array}{c}
\frac{3}{1}=\frac{3 \times 15}{1 \times 15}=\frac{45}{15} ; \frac{6}{5}=\frac{6 \times 3}{5 \times 3}=\frac{18}{15} ; \\
\therefore \frac{2}{3}=\frac{2 \times 5}{3 \times 5}=\frac{10}{15} ; \frac{7}{15}=\frac{7 \times 1}{15 \times 1}=\frac{7}{15} \\
\therefore 3+1 \frac{1}{5}+\frac{2}{3}-\frac{7}{15}=\frac{45}{15}+\frac{18}{15}+\frac{10}{15}-\frac{7}{15} \\
\\
\therefore=\frac{45+18,15}{18+10-7} \\
\therefore
\end{array}\right)=\frac{73-7}{15}=\frac{66}{15}=\frac{22}{5}=4 \frac{2}{5}
\end{aligned}
$$

(i) $2+5 \frac{7}{10}-3 \frac{14}{15}=\frac{2}{1}+\frac{57}{10}-\frac{59}{15}$

LCM of 10 and $15=2 \times 3 \times 5=30$
$\therefore \quad \frac{2}{1}=\frac{2 \times 30}{1 \times 30}=\frac{60}{30} ; \frac{57}{10}=\frac{57 \times 3}{10 \times 3}=\frac{171}{30}$;

2	10,15
	5,
	5,
	1,

$$
\begin{aligned}
& \frac{59}{15}=\frac{59 \times 2}{15 \times 2}=\frac{118}{30} \\
& \therefore \quad 2+5 \frac{7}{10}-3 \frac{14}{15}=\frac{60}{30}+\frac{171}{30}-\frac{118}{30} \\
&=\frac{60+171-118}{30}=\frac{231-118}{30} \\
&=\frac{113}{30}=3 \frac{23}{30}
\end{aligned}
$$

3. Required fraction $=8 \frac{1}{5}-6 \frac{7}{15}=\frac{41}{5}-\frac{97}{15}$

$$
\begin{aligned}
& =\frac{41 \times 3}{5 \times 3}-\frac{97}{15}=\frac{123}{15}-\frac{97}{15} \\
& =\frac{123-97}{15}=\frac{26}{15}=1 \frac{11}{15}
\end{aligned}
$$

3	5,15	
5	5,	5
	1,	1

LCM of 3 and $5=3 \times 5$

$$
=15
$$

4. Required fraction $=19-9 \frac{2}{3}=\frac{19}{1}-\frac{29}{3}$

$$
\begin{aligned}
& =\frac{19 \times 3}{1 \times 3}-\frac{29}{3} \quad \quad(\text { Since, } 1 \text { and } 3 \text { are co-primes) } \\
& =\frac{57}{3}-\frac{29}{3}=\frac{57-29}{3}=\frac{28}{3}=9 \frac{1}{3}
\end{aligned}
$$

5. Required fraction $=\left(5 \frac{5}{6}+4 \frac{1}{9}\right)-\left(3 \frac{5}{9}+3 \frac{1}{3}\right)$

$$
\begin{aligned}
& =\left(\frac{35}{6}+\frac{37}{9}\right)-\left(\frac{32}{9}+\frac{10}{3}\right) \\
= & \left(\frac{35 \times 3}{6 \times 3}+\frac{37 \times 2}{9 \times 2}\right)-\left(\frac{32 \times 2}{9 \times 2}+\frac{10 \times 6}{3 \times 6}\right) \\
= & \left(\frac{105}{18}+\frac{74}{18}\right)-\left(\frac{64}{18}+\frac{60}{18}\right) \\
= & \frac{105+74}{18}-\frac{64+60}{18}=\frac{179}{18}-\frac{124}{18} \\
= & \frac{179-124}{18}=\frac{55}{18}=3 \frac{1}{18}
\end{aligned}
$$

6. Given $\frac{3}{4}$ and $\frac{5}{7}$

$$
\frac{3}{4}=\frac{3 \times 7}{4 \times 7}=\frac{21}{28} ; \frac{5}{7}=\frac{5 \times 4}{7 \times 4}=\frac{20}{28}
$$

(Since, 4 and 7 are co-primes)

Clearly, $\quad \frac{21}{28}>\frac{20}{28}$
$\therefore \quad \frac{3}{4}>\frac{5}{7}$
Now, $\quad \frac{3}{4}-\frac{5}{7}=\frac{21}{28}-\frac{20}{28}=\frac{21-20}{28}=\frac{1}{28}$
Hene, $\frac{3}{4}$ is greater by $\frac{1}{28}$.
7. Total duration of film show $=3 \frac{1}{3}$ hours

Duration of advertisements $=1 \frac{3}{4}$ hours
Duration of the film $=\left(3 \frac{1}{3}-1 \frac{3}{4}\right)$ hours $=\left(\frac{10}{3}-\frac{7}{4}\right)$ hours

$$
\begin{aligned}
& =\left(\frac{10 \times 4}{3 \times 4}-\frac{7 \times 3}{4 \times 3}\right) \text { hours } \quad(\text { Since, } 3 \text { and } 4 \text { are co-primes) } \\
& =\left(\frac{40}{12}-\frac{21}{12}\right) \text { hours }=\frac{40-21}{12} \text { hours } \\
& =\frac{19}{12} \text { hours }=1 \frac{7}{12} \text { hours }
\end{aligned}
$$

Hence, actual duration of the film is $1 \frac{7}{12}$ hours or 1 hour 35 minutes.
8. Total amount of milk $=7 \frac{1}{2}$ litres

Amount of milk was consumed $=5 \frac{3}{4}$ litres
Amount of milk was left $=\left(7 \frac{1}{2}-5 \frac{3}{4}\right)$ litres

$$
\begin{aligned}
& =\left(\frac{15}{2}-\frac{23}{4}\right) \text { litres }=\left(\frac{15 \times 2}{2 \times 2}-\frac{23}{4}\right) \text { litres } \\
& =\left(\frac{30}{4}-\frac{23}{4}\right) \text { litres }=\frac{30-23}{4} \text { litres } \\
& =\frac{7}{4} \text { litres }=1 \frac{3}{4} \text { litres }
\end{aligned}
$$

Hence, $1 \frac{3}{4}$ litres or 1 litre 750 ml of milk is left with Mrs. Dua.
9. Total length of ribbon $=2 \frac{3}{4} \mathrm{~m}$

Length of one piece $=\frac{5}{8} \mathrm{~m}$
Length of other piece $=\left(2 \frac{3}{4}-\frac{5}{8}\right) \mathrm{m}=\left(\frac{11}{4}-\frac{5}{8}\right) \mathrm{m}$

$$
\begin{aligned}
& =\left(\frac{11 \times 2}{4 \times 2}-\frac{5}{8}\right) \mathrm{m}=\left(\frac{22}{8}-\frac{5}{8}\right) \mathrm{m} \\
& =\frac{22-5}{8} \mathrm{~m}=\frac{17}{8} \mathrm{~m}=2 \frac{1}{8} \mathrm{~m}
\end{aligned}
$$

Hence, the length of other piece is $2 \frac{1}{8} \mathrm{~m}$.
10. Total amount of money $=$ ' $137 \frac{1}{2}$

Amount of money was spent on food $=` 56 \frac{3}{4}$

$$
\begin{aligned}
\text { Amount of money is left now } & =\left(\left(137 \frac{1}{2}-56 \frac{3}{4}\right)=\backslash\left(\frac{275}{2}-\frac{227}{4}\right)\right. \\
& =\backslash\left(\frac{275 \times 2}{2 \times 2}-\frac{227}{4}\right) \\
& =\backslash\left(\frac{550}{4}-\frac{227}{4}\right)=\backslash \frac{550-227}{4} \\
& =\backslash \frac{323}{4}=` 80 \frac{3}{4}
\end{aligned}
$$

Hence, ` $80 \frac{3}{4}$ is left now.

EXERCISE 5G

1. HCF of 24 and $36=2 \times 2 \times 3=12$

$$
\therefore \quad \frac{24}{36}=\frac{24 \div 12}{36 \div 12}=\frac{2}{3}
$$

\therefore (b) is correct.

2	24,36
2	12,
3	6,
	2,

2. (c)
3. (c)
4. $\frac{45}{60}=\frac{3}{x}$
\because

$$
45=3 \times 15
$$

$$
\begin{array}{lrl}
\therefore & 60 & =x \times 15 \\
\therefore & x & =4
\end{array}
$$

\therefore (a) is correct.
5. (c)
6. (d)
7. (b)
8. (a)
9. $4 \frac{3}{5}=\frac{(4 \times 5)+3}{5}=\frac{20+3}{5}=\frac{23}{5}$
\therefore (b) is correct.
10. $\frac{34}{7}=34 \div 7$
$\therefore \quad \frac{34}{7}=4 \frac{6}{7}$

$$
\begin{gathered}
7 \longdiv { 3 4 } (4 \\
-28 \\
-6 \\
\hline
\end{gathered}
$$

\therefore (c) is correct.
11. $\frac{5}{8}+\frac{1}{8}=\frac{5+1}{8}=\frac{6}{8}=\frac{3}{4}$
12. $\frac{5}{8}-\frac{1}{8}=\frac{5-1}{8}=\frac{4}{8}=\frac{1}{2}$
\therefore (b) is correct.
\therefore (b) is correct.
13. $3 \frac{3}{4}-2 \frac{1}{4}=\frac{15}{4}-\frac{9}{4}=\frac{15-9}{4}=\frac{6}{4}=\frac{3}{2}=1 \frac{1}{2}$
\therefore (a) is correct.
14. $\frac{5}{6}+\frac{2}{3}-\frac{4}{9}$

LCM of 6,3 and $9=2 \times 3 \times 3=18$

$$
\therefore \quad \frac{5}{6}=\frac{5 \times 3}{6 \times 3}=\frac{15}{18} ; \frac{2}{3}=\frac{2 \times 6}{3 \times 6}=\frac{12}{18} ; \frac{4}{9}=\frac{4 \times 2}{9 \times 2}=\frac{8}{18}
$$

2	$6,3,9$
3	$3,3,9$
3	$1,1,3$
	$1,1,1$

$$
\therefore \frac{5}{6}+\frac{2}{3}-\frac{4}{9}=\frac{15}{18}+\frac{12}{18}-\frac{8}{18}=\frac{15+12-8}{18}
$$

$$
=\frac{27-8}{18}=\frac{19}{18}=1 \frac{1}{18}
$$

\therefore (d) is correct.
15. Given, $3 \frac{1}{3}$ and $\frac{33}{10}$

$$
\frac{10}{3} \text { and } \frac{33}{10}
$$

$$
\begin{aligned}
& \frac{10}{3}>\frac{33}{10} \\
& 10 \times 10=100 \text { and } 3 \times 33=99 \\
& \because \quad 100>99 \\
& \therefore \quad \frac{10}{3}>\frac{33}{10} \text { or } 3 \frac{1}{3}>\frac{33}{10} \\
& \therefore \quad \text { (a) is correct. }
\end{aligned}
$$

HOTS

- Seema completes her homework in the morning $=\frac{2}{5}$

She completes her homework in the evening $=\frac{3}{10}$
She completes her homework $=\frac{2}{5}+\frac{3}{10}=\frac{4+3}{10}=\frac{7}{10}$

$$
\text { Homework left }=1-\frac{7}{10}=\frac{1}{1}-\frac{7}{10}=\frac{10-7}{10}=\frac{3}{10}
$$

Hence, her $\frac{3}{10}$ of homework is left.

VALUE BASED

- Varsha has sandwiches $=2$

No. of girls $=($ Varsha + Geeta + Sonia $)=3$
$\therefore \quad$ Each girl get $=\frac{1}{3}$ of 2

$$
=\frac{1}{3} \times 2=\frac{2}{3}
$$

Chapter 6 Simplification

EXERCISE 6A

1. $13-(12-6 \div 3)=13-(12-2)$
[performing division]

$$
\begin{aligned}
& =13-10 \\
& =3
\end{aligned}
$$

[performing subtraction]
[performing subtraction]

$$
\text { 2. } \begin{aligned}
21-12 \div 3 \times 2 & =21-4 \times 2 \\
& =21-8 \\
& =13
\end{aligned}
$$

3. $16+8 \div 4-2 \times 3=16+2-2 \times 3$
[removing \div]

$$
\begin{aligned}
& =16+2-6 \\
& =18-6 \\
& =12
\end{aligned}
$$

$$
\text { [removing } \times \text {] }
$$

[performing subtraction]
[performing subtraction]
4. $36-[18-\{14-(15-4 \div 2 \times 2)\}]$

$$
\begin{array}{llr}
=36-[18-\{14-(15-2 \times 2)\}] & \text { [removing } \div] \\
=36-[18-\{14-(15-4)\}] & \text { [removing } \times] \\
=36-[18-\{14-11\}] & \text { [removing parentheses] } \\
=36-[18-3] & \text { [removing braces] } \\
=36-15 & \text { [removing square brackets] } \\
=21 &
\end{array}
$$

5. $19-[4+\{16-(12-2)\}]=19-[4+\{16-10\}] \quad[$ removing parentheses]

$$
\begin{aligned}
& =19-[4+6] \\
& =19-10 \\
& =9
\end{aligned}
$$

[removing braces]
[removing square brackets] [performing subtraction]
6. $27-[18-\{16-(5-\overline{4-1})\}]$

$$
\begin{aligned}
& =27-[18-\{16-(5-3)\}] \\
& =27-[18-\{16-2\}] \\
& =27-[18-14] \\
& =27-4 \\
& =23
\end{aligned}
$$

[removing bar]

$$
=27-[18-\{16-2\}] \quad[\text { removing parentheses }]
$$

[removing braces] [removing square brackets] [performing subtraction]
7. $\left(\frac{2}{3}+\frac{4}{9}\right)$ of $\frac{3}{5} \div 1 \frac{2}{3} \times 1 \frac{1}{4}-\frac{1}{3}$
$=\frac{6+4}{9}$ of $\frac{3}{5} \div \frac{5}{3} \times \frac{5}{4}-\frac{1}{3} \quad$ [removing parentheses]
$=\frac{10}{9} \times \frac{3}{5} \div \frac{5}{3} \times \frac{5}{4}-\frac{1}{3} \quad$ [removing 'of']
$=\frac{10}{9} \times \frac{3}{5} \times \frac{3}{5} \times \frac{5}{4}-\frac{1}{3} \quad\left[\right.$ reciprocal of $\left.\frac{5}{3}\right]$
$=\frac{1}{2}-\frac{1}{3}$
[removing \times]
$=\frac{3-2}{6}=\frac{1}{6}$
[performing subtraction]
8. $4 \frac{4}{5} \div \frac{3}{5}$ of $5+\frac{4}{5} \times \frac{3}{10}-\frac{1}{5}=\frac{24}{5} \div \frac{3}{5} \times 5+\frac{4}{5} \times \frac{3}{10}-\frac{1}{5} \quad$ [removing 'of ']

$$
\begin{array}{ll}
=\frac{24}{5} \div 3+\frac{6}{25}-\frac{1}{5} & \text { [removing ' } x \text { '] } \\
=\frac{8}{5}+\frac{6}{25}-\frac{1}{5} & \text { [removing ' } \div \prime \text { '] } \\
=\frac{40+6-5}{25}=\frac{41}{25} & \\
=1 \frac{16}{25} & \text { [performing addition and subtraction] }
\end{array}
$$

9. $5 \frac{1}{7}-\left\{3 \frac{3}{10} \div\left(2 \frac{4}{5}-\frac{7}{10}\right)\right\}=\frac{36}{7}-\left\{\frac{33}{10} \div\left(\frac{14}{5}-\frac{7}{10}\right)\right\}$

$$
\begin{array}{lr}
=\frac{36}{7}-\left\{\frac{33}{10} \div \frac{28-7}{10}\right\} & \text { [removing parentheses] } \\
=\frac{36}{7}-\left\{\frac{33}{10} \div \frac{21}{10}\right\} & \\
=\frac{36}{7}-\left\{\frac{33}{10} \times \frac{10}{21}\right\} & \text { [removing ' } \div \text { '] } \\
=\frac{36}{7}-\frac{11}{7} & \text { [removing braces] } \\
=\frac{36-11}{7}=\frac{25}{7}=3 \frac{4}{7} & \text { [performing subtraction] }
\end{array}
$$

10. $7 \frac{1}{3} \div \frac{2}{3}$ of $2 \frac{1}{5}+1 \frac{3}{8} \div 2 \frac{3}{4}-1 \frac{1}{2}$

$$
\begin{aligned}
& =\frac{22}{3} \div\left(\frac{2}{3} \times \frac{11}{5}\right)+\frac{11}{8} \div \frac{11}{4}-\frac{3}{2} \quad \text { [removing 'of '] } \\
& =\frac{22}{3} \div \frac{22}{15}+\frac{11}{8} \div \frac{11}{4}-\frac{3}{2} \\
& =\frac{22}{3} \times \frac{15}{22}+\frac{11}{8} \times \frac{4}{11}-\frac{3}{2} \quad \text { [removing ' } \because \text { '] } \\
& =5 \times \frac{1}{2}-\frac{3}{2} \quad \text { [removing ' } \times \text { '] } \\
& =\frac{10+1-3}{2}=\frac{8}{2} \quad \text { [performing addition and subtraction] } \\
& =4
\end{aligned}
$$

11. $1 \frac{5}{6}+\left[2 \frac{2}{3}-\left\{3 \frac{3}{4}\left(3 \frac{4}{5} \div 9 \frac{1}{2}\right)\right\}\right]=\frac{11}{6}+\left[\frac{8}{3}-\left\{\frac{15}{4}\left(\frac{19}{5} \div \frac{19}{2}\right)\right\}\right]$
$=\frac{11}{6}+\left[\frac{8}{3}-\left\{\frac{15}{4}\left(\frac{19}{5} \times \frac{2}{19}\right)\right\}\right] \quad$ [removing ' \because ']
$=\frac{11}{6}+\left[\frac{8}{3}-\left\{\frac{15}{4} \times \frac{2}{5}\right\}\right] \quad$ [removing parentheses] $=\frac{11}{6}+\left[\frac{8}{3}-\frac{3}{2}\right] \quad$ [removing braces]
$=\frac{11}{6}+\frac{16-9}{6} \quad$ [removing square brackets] $=\frac{11}{6}+\frac{7}{6}=\frac{11+7}{6}=\frac{18}{6}=3 \quad$ [performing addition]
12. $9 \frac{3}{4} \div\left[2 \frac{1}{6}+\left\{4 \frac{1}{3}-\left(1 \frac{1}{2}+1 \frac{3}{4}\right)\right\}\right]$

$$
=\frac{39}{4} \div\left[\frac{13}{6}+\left\{\frac{13}{3}-\left(\frac{3}{2}+\frac{7}{4}\right)\right\}\right]
$$

$$
=\frac{39}{4} \div\left[\frac{13}{6}+\left\{\frac{13}{3}-\frac{6+7}{4}\right\}\right] \quad \text { [removing parentheses] }
$$

$$
=\frac{39}{4} \div\left[\frac{13}{6}+\left\{\frac{13}{3}-\frac{13}{4}\right\}\right]
$$

$$
=\frac{39}{4} \div\left[\frac{13}{6}+\frac{52-39}{12}\right]
$$

[removing braces]
$=\frac{39}{4} \div\left[\frac{13}{6}+\frac{13}{12}\right]$
$=\frac{39}{4} \div \frac{26+13}{12}$
[removing square brackets]
$=\frac{39}{4} \div \frac{39}{12}=\frac{39}{4} \times \frac{12}{39}$
$=3$
$\left.\left.-\left(\frac{2}{5}+\frac{3}{10}-\frac{4}{15}\right)\right\}\right]$
$=\frac{41}{10}-\left[\frac{5}{2}-\left\{\frac{5}{6}-\left(\frac{2}{5}+\frac{3}{10}-\frac{4}{15}\right)\right\}\right]$

$$
\begin{aligned}
& =\frac{41}{10}-\left[\frac{5}{2}-\left\{\frac{5}{6}-\frac{12+9-8}{30}\right\}\right] \quad \text { [removing parentheses] } \\
& =\frac{41}{10}-\left[\frac{5}{2}-\left\{\frac{5}{6}-\frac{13}{30}\right\}\right] \\
& =\frac{41}{10}-\left[\frac{5}{2}-\frac{25-13}{30}\right] \\
& \text { [removing braces] } \\
& =\frac{41}{10}-\left[\frac{5}{2}-\frac{12}{30}\right] \\
& =\frac{41}{10}-\frac{75-12}{30} \quad \text { [removing square brackets] } \\
& =\frac{41}{10}-\frac{63}{30}=\frac{41}{10}-\frac{21}{10} \\
& =\frac{41-21}{10} \\
& =\frac{20}{10}=2 \\
& \text { 14. } 7 \frac{1}{2}-\left[2 \frac{1}{4}-\left\{1 \frac{1}{4}-\frac{1}{2}\left(\frac{3}{2}-\overline{\frac{1}{3}-\frac{1}{6}}\right)\right\}\right] \\
& =\frac{15}{2}-\left[\frac{9}{4}-\left\{\frac{5}{4}-\frac{1}{2}\left(\frac{3}{2}-\frac{2-1}{6}\right)\right\}\right] \quad[\text { removing bar] } \\
& =\frac{15}{2}-\left[\frac{9}{4}-\left\{\frac{5}{4}-\frac{1}{2}\left(\frac{3}{2}-\frac{1}{6}\right)\right\}\right] \\
& =\frac{15}{2}-\left[\frac{9}{4}-\left\{\frac{5}{4}-\frac{1}{2}\left(\frac{9-1}{6}\right)\right\}\right] \\
& =\frac{15}{2}-\left[\frac{9}{4}-\left\{\frac{5}{4}-\frac{1}{2} \times \frac{8}{6}\right\}\right] \quad \text { [removing parentheses] } \\
& =\frac{15}{2}-\left[\frac{9}{4}-\left\{\frac{5}{4}-\frac{2}{3}\right\}\right] \\
& =\frac{15}{2}-\left[\frac{9}{4}-\frac{15-8}{12}\right] \\
& \text { [removing braces] } \\
& =\frac{15}{2}-\left[\frac{9}{4}-\frac{7}{12}\right] \\
& =\frac{15}{2}-\frac{27-7}{12} \\
& \text { [removing square brackets] }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{15}{2}-\frac{20}{12}=\frac{15}{2}-\frac{5}{3}=\frac{45-10}{6} \quad \text { [performing subtraction] } \\
& =\frac{35}{6}=5 \frac{5}{6}
\end{aligned}
$$

15. $4 \frac{4}{5}-\left[2 \frac{1}{5}-\frac{1}{2}\left\{1 \frac{1}{4}-\overline{\frac{1}{3}-\frac{1}{6}}\right\}\right]=\frac{24}{5}-\left[\frac{11}{5}-\frac{1}{2}\left\{\frac{5}{4}-\overline{\frac{1}{3}-\frac{1}{6}}\right\}\right]$

$$
\begin{array}{ll}
=\frac{24}{5}-\left[\frac{11}{5}-\frac{1}{2}\left\{\frac{5}{4}-\frac{2-1}{6}\right\}\right] \\
=\frac{24}{5}-\left[\frac{11}{5}-\frac{1}{2}\left\{\frac{5}{4}-\frac{1}{6}\right\}\right] & \text { [removing bar] }
\end{array}
$$

$$
=\frac{24}{5}-\left[\frac{11}{5}-\frac{1}{2} \times \frac{15-2}{12}\right] \quad \text { [removing braces] }
$$

$$
=\frac{24}{5}-\left[\frac{11}{5}-\frac{1}{2} \times \frac{13}{12}\right]
$$

$$
=\frac{24}{5}-\left[\frac{11}{5}-\frac{13}{24}\right]
$$

$$
=\frac{24}{5}-\frac{264-65}{120} \quad \text { [removing square brackets] }
$$

$$
=\frac{24}{5}-\frac{199}{120}=\frac{576-199}{120} \quad \text { [performing subtraction] }
$$

$$
=\frac{377}{120}
$$

EXERCISE 6B

1. $13-(12-6 \div 3)=13-(12-2)$

$$
\begin{aligned}
& =13-10 \\
& =3
\end{aligned}
$$

[removing parentheses]
[performing subtraction]
\therefore (d) is correct.
2. $8+4 \div 2 \times 5=8+2 \times 5$ [removing \div]

$$
\begin{aligned}
& =8+10 \\
& =18
\end{aligned}
$$

$$
\text { [removing } \times \text {] }
$$

[performing addition]
\therefore (c) is correct.
3. $54 \div 3$ of $6+9=54 \div(3 \times 6)+9$

$$
\begin{aligned}
& =54 \div 18+9 \\
& =3+9 \\
& =12
\end{aligned}
$$

[removing 'of']
[removing ' X ']
[removing ' \because ' ${ }^{\prime}$]
[performing addition]
\therefore (b) is correct.
4. $3640-14 \div 7 \times 2=3640-2 \times 2$

$$
\begin{aligned}
& =3640-4 \\
& =3636
\end{aligned}
$$

\therefore (a) is correct.
5. $100 \times 10-100+2000 \div 100=1000-100+20$

$$
\begin{aligned}
& =900+20 \\
& =920
\end{aligned}
$$

\therefore (b) is correct.
6. $133+278 \div 7-8 \times 2=133+\frac{278}{7}-16$

$$
\begin{aligned}
& =\frac{931+278-112}{7} \\
& =\frac{1209-112}{7} \\
& =\frac{1097}{7}=156 \frac{5}{7}
\end{aligned}
$$

\therefore (d) is correct.
7. $1001 \div 11$ of $13=1001 \div(11 \times 13)$

$$
=1001 \div 143
$$

$$
=7 \quad[\text { removing } ‘ \div ’]
$$

\therefore (a) is correct.
8. $8-[28 \div\{34-(36-18 \div 9 \times 8)\}]$

$$
\begin{array}{lr}
=8-[28 \div\{34-(36-2 \times 8)\}] & \\
=8-[28 \div\{34-(36-16)\}] & \text { [removing parentheses] } \\
=8-[28 \div\{34-20\}] & \text { [removing braces] } \\
=8-[28 \div 14] & \text { [removing square brackets] } \\
=8-2 & \\
=6 & \text { [performing subtraction] }
\end{array}
$$

\therefore (a) is correct.
9. $27-[18-\{16-\overline{4-1})\}]=27-[18-\{16-3\}] \quad$ [removing bar]

$$
\begin{array}{lr}
=27-[18-3] & \text { [removing braces] } \\
=27-5 & \text { [removing square brackets] } \\
=22 & \text { [performing subtraction] }
\end{array}
$$

\therefore (d) is correct.
10. $32-[48 \div\{36-(27-16-9)\}]$

$$
=32-[48 \div\{36-(27-7)\}] \quad[\text { removing bar }]
$$

$$
\begin{array}{lr}
=32-[48 \div\{36-20\}] & \text { [removing parentheses] } \\
=32-[48 \div 16] & \text { [removing braces] } \\
=32-3 & \text { [removing ' } \div \text { '] } \\
=29 & \text { [performing subtraction] }
\end{array}
$$

\therefore (a) is correct.

HOTS

- Mrs. Gupta buy apples $=2 \mathrm{~kg}$

Eaten by her children $=1 \frac{1}{4} \mathrm{~kg}=\frac{5}{4} \mathrm{~kg}$

$$
\text { Fruits left }=2-\frac{5}{4}=\frac{2}{1}-\frac{5}{4}=\frac{8-5}{4}=\frac{3}{4} \mathrm{~kg}
$$

Hence, $\frac{3}{4} \mathrm{~kg}$ of apples are left.

VALUE BASED

- $V i p i n$ spends on the food items $=\frac{3}{10}$

$$
\begin{aligned}
\text { On education } & =\frac{4}{15} \\
\text { On other expenses } & =\frac{7}{30} \\
\text { On donation } & =\frac{1}{30} \\
\text { Total spend } & =\frac{3}{10}+\frac{4}{15}+\frac{7}{30}+\frac{1}{30} \\
& =\frac{9+8+7+1}{30}=\frac{25}{30}=\frac{5}{6}
\end{aligned}
$$

Save money by him $=1-\frac{5}{6}=\frac{1}{1}-\frac{5}{6}=\frac{6-5}{6}=\frac{1}{6}$
\qquad Chapter 7
Decimals

EXERCISE 7A

1. (a) 52.999
(b) 624.024
(c) 9.856
(d) 36.348
(e) 404.044
(f) 0.173
(g) 0.015
2. (a) Place value of $2=20$, Place value of $5=5$,

Place value of $9=\frac{9}{10}$, Place value of $4=\frac{4}{100}$
(b) Place value of $1=100$, Place value of $6=60$, Place value of $4=4$, Place value of $1=\frac{1}{10}$, Place value of $5=\frac{5}{100}$, Place value of $8=\frac{8}{1000}$
(c) Place value of $5=50$, Place value of $7=7$, Place value of $0=0$,

Place value of $8=\frac{8}{100}$, Place value of $6=\frac{6}{1000}$
(d) Place value of $4=400$, Place value of $0=0$, Place value of $3=3$,

Place value of $3=\frac{3}{10}$, Place value of $4=\frac{4}{100}$, Place value of $8=\frac{8}{1000}$
(e) Place value of $4=4000$, Place value of $2=200$, Place value of $6=60$,

Place value of $0=0$, Place value of $2=\frac{2}{10}$, Place value of $5=\frac{5}{100}$
(f) Place value of $2=200$, Place value of $9=90$, Place value of $7=7$,

Place value of $3=\frac{3}{10}$, Place value of $0=0$, Place value of $8=\frac{8}{1000}$
3. (a) $78.94=(7 \times 10)+(8 \times 1)+\left(9 \times \frac{1}{10}\right)+\left(4 \times \frac{1}{100}\right)$
(b) $394.72=(3 \times 100)+(9 \times 10)+(4 \times 1)+\left(7 \times \frac{1}{10}\right)+\left(2 \times \frac{1}{100}\right)$
(c) $35.786=(3 \times 10)+(5 \times 1)+\left(7 \times \frac{1}{10}\right)+\left(8 \times \frac{1}{100}\right)+\left(6 \times \frac{1}{1000}\right)$
(d) $0.183=\left(1 \times \frac{1}{10}\right)+\left(8 \times \frac{1}{100}\right)+\left(3 \times \frac{1}{1000}\right)$
(e) $7.005=(7 \times 1)+\left(5 \times \frac{1}{1000}\right)$
(f) 5726.83

$$
=(5 \times 1000)+(7 \times 100)+(2 \times 10)+(6 \times 1)+\left(8 \times \frac{1}{10}\right)+\left(3 \times \frac{1}{100}\right)
$$

4. (a) $50+7+\frac{8}{10}+\frac{7}{100}=57.87$
(b) $600+80+9+\frac{4}{10}+\frac{2}{100}+\frac{7}{1000}=689.427$
(c) $800+40+1+\frac{9}{10}+\frac{5}{100}=841.95$
(d) $500+4+\frac{6}{100}+\frac{8}{1000}=504.068$
(e) $700+5+\frac{9}{10}+\frac{5}{1000}=705.905$
(f) $20+8+\frac{3}{100}+\frac{7}{1000}=28.037$
5. (a) $0.600,5.937,2.360,4.200$
(b) $7.500,64.230,0.074$
(c) $2.500,0.630,14.080,1.637$
(d) $1.60,0.07,3.58,2.90$
6. (a) $0.97 \square 1.07$
(b) $3.85>3.805$
(c) $12.06>12.006$
(d) $8.34 \square 8.43$
(e) $7.608 \square 7.68$
(f) $84.23>76.35$
7. (a) $0.06<0.6<6.06<6.6<66.6$
(b) $5.06<5.69<5.8<7.14<7.2$
(c) $0.33<3.003<3.033<3.3<3.303$
(d) $6.05<6.4<6.45<6.5<6.54$
8. (a) $30.3>30.03>3.3>3.03>3.003$
(b) $73.03>8.73>8.073>7.33>7.3$
(c) $88.8>88.08>8.88>8.088>8.008$
(d) $7.2>2.72>2.7>2.27>2.02>2.007$

EXERCISE 7B

1. (a) $0.6=\frac{6}{10}=\frac{3}{5}$
(b) $.9=\frac{9}{10}$
(c) $0.15=\frac{15}{100}=\frac{3}{20}$
(d) $.08=\frac{8}{100}=\frac{2}{25}$
(e) $.053=\frac{53}{1000}$
(f) $0.48=\frac{48}{100}=\frac{12}{25}$
(g) $.224=\frac{224}{1000}=\frac{28}{125}$
(h) $0.125=\frac{125}{1000}=\frac{1}{8}$
2. (a) $6.4=\frac{64}{10}=\frac{32}{5}=6 \frac{2}{5}$
(b) $8.36=\frac{836}{100}=\frac{209}{25}=8 \frac{9}{25}$
(c) $16.5=\frac{165}{10}=\frac{33}{2}=16 \frac{1}{2}$
(d) $25.06=\frac{2506}{100}=\frac{1253}{50}=25 \frac{3}{50}$
(e) $7.004=\frac{7004}{1000}=\frac{1751}{250}=7 \frac{1}{250}$
(f) $2.052=\frac{2052}{1000}=\frac{513}{250}=2 \frac{13}{250}$
(g) $3.108=\frac{3108}{1000}=\frac{777}{250}=3 \frac{27}{250}$
(h) $4.275=\frac{4275}{1000}=\frac{171}{40}=4 \frac{11}{40}$
3. (a) $\frac{23}{10}=2.3$
(b) $\frac{167}{100}=1.67$
(c) $\frac{5413}{1000}=5.413$
(d) $\frac{1589}{100}=15.89$
(e) $\frac{21415}{1000}=21.415$
(f) $\frac{25}{4}=6.25$
(g) $\frac{7}{8}=0.875$
$4 \longdiv { 2 5 } 6 . 2 5$
$\frac{-24}{10}$
$\frac{-8}{20}$
$\frac{-20}{\times}$
(h) $\frac{3}{40}=0.075$
$4 0 \longdiv { 3 0 0 } 0 . 0 7 5$
$\frac{-280}{200}$
$\frac{-200}{\times}$
(i) $\frac{19}{20}=0.95$
$2 0 \longdiv { 1 9 0 } 0 . 9 5$
$\frac{-180}{100}$
$\frac{-100}{\times}$
(j) $3 \frac{3}{5}=\frac{3 \times 5+3}{5}=\frac{15+3}{5}$

$$
=\frac{18}{5}=3.6
$$

$5 \longdiv { 1 8 (3 . 6 }$
$\frac{-15}{30}$ $\begin{array}{r}-30 \\ \times \\ \hline\end{array}$
(k) $1 \frac{4}{25}=\frac{1 \times 25+4}{25}$

$$
=\frac{25+4}{25}=\frac{29}{25}=1.16
$$

$2 5 \longdiv { 2 9 (1 . 1 6 }$
$\frac{-25}{40}$
$\frac{-25}{150}$
$\begin{array}{r}-150 \\ \hline\end{array}$
(1) $2 \frac{19}{40}=\frac{2 \times 40+19}{40}$

$$
\begin{aligned}
& =\frac{80+19}{40} \\
& =\frac{99}{40} \\
& =2.475
\end{aligned}
$$

$4 0 \longdiv { 9 9 \quad (2 . 4 7 5 }$
$\frac{-80}{190}$
$\frac{-160}{300}$
$\frac{-200}{200}$
$\frac{-200}{x}$
4. (a) ` 18 and 25 paise \(=` 18+` \frac{25}{100}\)

$$
\begin{aligned}
& =` 18+` 0.25 \\
& =` 18.25
\end{aligned}
$$

(b) ` 9 and 8 paise \(=` 9+` \frac{8}{100}\)

$$
\begin{aligned}
& =` 9+` 0.08 \\
& =` 9.08
\end{aligned}
$$

(c) 32 paise $=` \frac{32}{100}=` 0.32$
(d) 5 paise $=` \frac{5}{100}=` 0.05$
5. (a) 15 kg and $850 \mathrm{~g}=15 \mathrm{~kg}+\frac{850}{1000} \mathrm{~kg}$

$$
\begin{aligned}
& =15 \mathrm{~kg}+0.850 \mathrm{~kg} \\
& =15.850 \mathrm{~kg}
\end{aligned}
$$

(b) 8 kg and $96 \mathrm{~g}=8 \mathrm{~kg}+\frac{96}{1000} \mathrm{~kg}$

$$
\begin{aligned}
& =8 \mathrm{~kg}+0.096 \mathrm{~kg} \\
& =8.096 \mathrm{~kg}
\end{aligned}
$$

(c) $540 \mathrm{~g}=\frac{540}{1000} \mathrm{~kg}=0.540 \mathrm{~kg}$
(d) $8 \mathrm{~g}=\frac{8}{1000} \mathrm{~kg}=0.008 \mathrm{~kg}$
6. (a) $8 \mathrm{~kg} 640 \mathrm{~g}=8 \mathrm{~kg}+\frac{640}{1000} \mathrm{~kg} \quad$ (b) $9 \mathrm{~kg} 37 \mathrm{~g}=9 \mathrm{~kg}+\frac{37}{1000} \mathrm{~kg}$

$$
\begin{array}{ll}
=8 \mathrm{~kg}+0.640 \mathrm{~kg} & =9 \mathrm{~kg}+0.037 \mathrm{~kg} \\
=8.640 \mathrm{~kg} & =9.037 \mathrm{~kg}
\end{array}
$$

(c) 6 kg and $8 \mathrm{~g}=6 \mathrm{~kg}+\frac{8}{1000} \mathrm{~kg}$

$$
\begin{aligned}
& =6 \mathrm{~kg}+0.008 \mathrm{~kg} \\
& =6.008 \mathrm{~kg}
\end{aligned}
$$

$$
\text { 7. (a) } \begin{aligned}
4 \mathrm{~km} 365 \mathrm{~m} & =4 \mathrm{~km}+\frac{365}{1000} \mathrm{~km} & \text { (b) } \begin{aligned}
5 \mathrm{~km} 87 \mathrm{~m} & =5 \mathrm{~km}+\frac{87}{1000} \mathrm{~km} \\
& =4 \mathrm{~km}+0.365 \mathrm{~km} \\
& =5 \mathrm{~km}+0.087 \mathrm{~km} \\
& =4.365 \mathrm{~km}
\end{aligned} & =5.087 \mathrm{~km}
\end{aligned}
$$

(c) $3 \mathrm{~km} 6 \mathrm{~m}=3 \mathrm{~km}+\frac{6}{1000} \mathrm{~km}$
(d) $270 \mathrm{~m}=\frac{270}{1000} \mathrm{~km}$
$=3 \mathrm{~km}+0.006 \mathrm{~km}$
$=0.270 \mathrm{~km}$
$=3.006 \mathrm{~km}$
(e) $35 \mathrm{~m}=\frac{35}{1000} \mathrm{~km}=0.035 \mathrm{~km}$
(f) $6 \mathrm{~m}=\frac{6}{1000} \mathrm{~km}=0.006 \mathrm{~km}$

EXERCISE 7C

1. (a)	9.6	(b)	72.8	(c)	18.6	(d)	23.7
	14.8		7.68		84.75		106.94
	37		16.23		8.345		68.9
	+ 5.9		+ 0.7		+ 9.7		+ 29.5
	67.3		97.41		121.395		229.04
(e)	4.37	(f)	14.5	(g)	28.9	(h)	8.236
	9.638		0.038		19.64		16.064
	17.007		118.573		123.697		63.8
	+ 6.8		+ 6.84		+ 0.354		+ 27.53
	37.815		139.951		172.591		115.63

2. Length of cloth for salwar $=$

Length of cloth for shirt = $+3.35 \mathrm{~cm}$
Total length of cloth bought by Nisha $=\overline{5.40} \mathrm{~cm}$
Hence, the total length of cloth bought by Nisha $=5.40 \mathrm{~cm}$

$$
=5 \mathrm{~m} 40 \mathrm{~cm}
$$

3. Mass of sugar $=\quad 45.080 \mathrm{~kg}$

Mass of empty bag $=+0.950 \mathrm{~kg}$
Total mass $=\quad \overline{46.030} \mathrm{~kg}$
Hence, the mass of the bag containing sugar $=46.030 \mathrm{~kg}$

$$
=46 \mathrm{~kg} \mathrm{30g}
$$

| 4. $\begin{array}{l}\text { Distance covered by taxi }= \\ \text { Distance covered by rickshaw }= \\ \\ \text { Distance covered by on foot }= \\ \begin{array}{l}36.235\end{array} \quad+1.085 \mathrm{~km} \\ \text { Total distance covered }=\end{array} \quad \mathrm{km}$ |
| :--- | ---: |
| 1.400 km |

Hence, total distance covered by Harsh is 41 km 400 m .

5. Cost of almirah $=$	$₹ 11025.00$	
Spent on cartage $=$	$₹$	172.50
Spent on repairing $=$	$₹$	+64.80
Total money was spent $=$	$₹ 11262.30$	
Hence, the cost of almirah is ${ }^{`} 11262.30$		

6. Earning on first day $=₹ 32.60$

Earning on second day $=₹ 56.80$
Earning on third day $=+₹ 72.00$
Total earning ₹ 161.40
Hence, total earning of rickshaw puller during these days is ` 161.40 .

EXERCISE 7D

1. (a)	204.0	(b)	92.40	(c)	103.87	(d)	53.74
	- 56.8		-59.63		- 64.98		- 27.86
	147.2		32.77		38.89		25.88
(e)	70.680	(f)	600.000	(g)	216.20	(h)	523.120
	-39.875		-458.573		-127.38		- 348.237
	30.805		141.427		88.82		174.883

2. (a) $75.3-104.645+178.96-47.9$

75.30
+178.96
254.26
---:
+47.900
254.260
$\frac{-152.545}{101.715}$

(b) $76.3-7.666-6.77$

7.666
+6.77
14.436
---:
-14.436

$$
\begin{aligned}
& =76.3-(7.666+6.77) \\
& =76.3-14.436 \\
& =61.864
\end{aligned}
$$

(c) $37.6+72.85-58.678-6.09$

37.6
+72.85
110.45
---:
-6.090
64.768

$=(37.6+72.85)-(58.678+6.09)$	+72.85	
$=110.45-64.738$	and	$\underline{-6.090}$
$\underline{64.768}$		

$=45.682$
110.450
$\begin{array}{r}-64.768 \\ \hline 45.682 \\ \hline\end{array}$

$$
\begin{aligned}
& \text { (d) } 213.4-56.84-11.87-16.087 \quad 56.840 \\
& =213.4-(56.84+11.87+16.087) \quad 11.870 \\
& \begin{array}{lrlr}
=213.4-84.797 & \text { and } & \underline{-16.087} \\
=128.603 & \underline{84.797} & \underline{128.603} \\
\hline
\end{array} \\
& \text { 3. } \text { Required number }=7.3-0.862 \\
& =6.438 \\
& \text { 4. } \text { Required number }=91-74.5 \\
& =16.5 \\
& \text { 5. Required number }=84.5-27.84 \\
& 84.50 \\
& =56.66 \\
& \begin{array}{r}
-27.84 \\
\hline 56.66 \\
\hline 50.000 \\
-23.754 \\
\hline 26.246 \\
\hline
\end{array} \\
& \text { 7. Weight of fruits = } \\
& 5.075 \mathrm{~kg} \\
& \begin{array}{l}
\text { Weight of vegetables }= \\
\text { Total weight of these contents }=\underline{8.540}
\end{array} \quad \begin{array}{r}
+3.465 \\
\mathrm{~kg}
\end{array} \\
& \text { Weight of bag containing these contents }=9.000 \mathrm{~kg} \\
& \begin{array}{ll}
\text { Total weight of contents }= \\
\text { Weight of empty bag }= & \frac{-8.540}{0.460} \mathrm{~kg} \\
\hline
\end{array} \\
& \text { Hence, the weight of the empty bag is } 460 \mathrm{~g} \text {. } \\
& \text { 8. } \text { Distance covered by scooter }=10.065 \mathrm{~km} \\
& \text { Distance covered by scooter }=\quad+3.075 \mathrm{~km} \\
& \text { Total distance covered by Geeta }=13.14 \mathrm{~km} \\
& \text { Total distance between Geeta's house and her office }=14.000 \mathrm{~km} \\
& \text { Distance covered by Geeta }=-13.140 \mathrm{~km} \\
& \text { Distance covered by walking }=\overline{0.860} \mathrm{~km} \\
& \text { Hence, distance covered by walking is } 860 \mathrm{~m} \text {. } \\
& \text { 9. Weight of bag of Usha }=\quad 6.080 \mathrm{~kg} \\
& \text { Weight of bag of Sudha }=\quad-5.265 \mathrm{~kg} \\
& \text { Difference between both bags }=0.815 \mathrm{~kg} \\
& \text { Hence, Usha's bag is heavier by } 815 \mathrm{~g} \text {. }
\end{aligned}
$$

10. Cost of notebook $=\quad ₹ 19.75$

Cost of pencil $=$ ₹ 3.85
Cost of pen $=$ + ₹ 8.35
Total cost of these items $=₹ 31.95$
Sagar gave money to the shopkeeper $=₹ 50.00$

Total cost of these items $=$	
Amount got back by Sagar $=$	$\frac{+₹ 31.95}{₹ 18.05}$

Hence, Sagar got back an amount of ${ }^{`} 18.05$.

EXERCISE 7E

1. (c)
2. (d)
3. (b)
4. (a)
5. (c)
6. $2 \frac{12}{100}=2+\frac{12}{100}$
$=2+0.12$
$=2.12$
\therefore (a) is correct.
7. $4 \frac{8}{100}=4+\frac{8}{100}$
$=4+0.08$
$=4.08$
\therefore (b) is correct.
8. $7.25=\frac{725}{100}=\frac{29}{4}=7 \frac{1}{4}$
\therefore (b) is correct.
9. $\frac { 8 } { 2 5 } = 0 . 3 2 \quad 2 5 \longdiv { 8 0 } (0 . 3 2$
\therefore (b) is correct. $\frac{-75}{50}$

$$
\frac{-50}{\times}
$$

10. $9 \frac{7}{8}=9+\frac{7}{8}$

$8 \longdiv { 7 0 }$
5-64 60 $\frac{-56}{40}$

11. $42.8=\frac{428}{10}$
$5 \longdiv { 2 1 4 (4 2 }$

$$
\begin{aligned}
& =\frac{214}{5} \\
& =42 \frac{4}{5} \\
& \text { (a) is correct. }
\end{aligned}
$$

12. $8 \frac{1}{25}=8+\frac{1}{25} \quad 25 \overbrace{-100}^{100} 0.04$

$$
\begin{aligned}
& =8+0.04 \quad \frac{-100}{\times} \\
& =8.04
\end{aligned}
$$

13. $7+\frac{6}{10}+\frac{5}{100}=7+0.6+0.05$

$$
=7.65
$$

$\therefore \quad(c)$ is correct.
\therefore (b) is correct.
14. $3+\frac{7}{100}=3+0.07=3.07$
15. $\frac{2}{100}+\frac{5}{10000}=0.02+0.0005$
\therefore (b) is correct.

$$
=0.0205
$$

\therefore (c) is correct.

HOTS

- Last digit of decimal number $=$ hundredths place digit $=3$

Tenths place digit $=$ hundredths place digit -1

$$
=3-1=2
$$

Other digit $=$ Tenths place digit +3

$$
=2+3=5
$$

$\therefore \quad$ Decimal number $=5.23$

VALUE BASED

- Shikha and Asha got money from their mother =` 200

$$
\text { Shikha's share }={ }^{`} 200 \div 2={ }^{`} 100
$$

Shikha spend money $=` 25.80+` 38.65$
$={ }^{`} 64.45$
Shikha returned remaining money $=$ `\(100-\)` 64.45
$=` 35.55$

= Chapter 8 Algebraic Expressions

EXERCISE 8A

1. (a) x increased by $10=x+10$
(b) y decreased by $5=y-5$
(c) The difference of a and b, when $a>b=a-b$
(d) The product of x and y added to their sum $=(x+y)+x y$
(e) One-third of x multiplied by the sum of a and $b=\frac{1}{3} x(a+b)$
(f) 4 times x added to 6 times $y=6 y+4 x$
(g) Sum of x and the quotient of y by $8=x+\frac{y}{8}$
(h) x taken away from $9=9-x$
(i) 3 less than the quotient of x by $y=\frac{x}{y}-3$
(j) x multiplied by itself $=x^{2}$
(k) Twice x increased by $y=2 x+y$
(l) x minus twice $y=x-2 y$
(m) Thrice x added to y squared $=y^{2}+3 x$
(n) The quotient of x by 7 is multiplied by $y=\frac{x}{7} \times y$
(o) x cubed less than y cubed $=y^{3}-x^{3}$
2. Raj scores in English $=70$ marks

Raj scores in Hindi $=x$ marks
Total score $=(70+x)$ marks
3. (a) $b \times b \times b \times \ldots 17$ times $=b^{17}$
(b) $y \times y \times y \times \ldots 18$ times $=y^{18}$
(c) $12 \times a \times a \times a \times a \times b \times b \times b \times b=12 a^{4} b^{4}$
(d) $5 \times x \times x \times y \times y \times y=5 x^{2} y^{3}$
(e) $8 \times z \times z \times z \times y \times y \times x=8 z^{3} y^{2} x$
4. (a) $4 x^{4}=4 \times x \times x \times x \times x$
(b) $x^{3} y^{5}=x \times x \times x \times y \times y \times y \times y \times y$
(c) $7 x y^{2} z^{3}=7 \times x \times y \times y \times z \times z \times z$
(d) $15 x^{2} y^{2} z^{2}=15 \times x \times x \times y \times y \times z \times z$

EXERCISE 8B

1. Given, $a=2$ and $b=3$, then
(a) $a^{3}-b^{3}=(2)^{3}-(3)^{3}=8-27=-19$
(b) $a b-b^{2}=2 \times 3-(3)^{2}=6-9=-3$
(c) $a^{2}+a b=(2)^{2}+2 \times 3=4+6=10$
(d) $a+b=2+3=5$
(e) $2 a-3 b=2 \times 2-3 \times 3=4-9=-5$
(f) $5 a^{2}-2 a b=5 \times(2)^{2}-2 \times 2 \times 3=5 \times 4-12=20-12=8$
2. Given, $x=1, y=2$ and $z=5$, then
(a) $x^{3}-y^{3}-z^{3}=(1)^{3}-(2)^{3}-(5)^{3}$

$$
\begin{aligned}
& =1-8-125 \\
& =1-133=-132
\end{aligned}
$$

(b) $x y+y z-z x=1 \times 2+2 \times 5-5 \times 1$

$$
\begin{aligned}
& =2+10-5 \\
& =12-5 \\
& =7
\end{aligned}
$$

(c) $x^{2}+y^{2}+z^{2}=(1)^{2}+(2)^{2}+(5)^{2}$

$$
\begin{aligned}
& =1+4+25 \\
& =30
\end{aligned}
$$

(d) $3 x-2 y+4 z=3 \times 1-2 \times 2+4 \times 5$

$$
\begin{aligned}
& =3-4+20 \\
& =23-4 \\
& =19
\end{aligned}
$$

(e) $2 x^{2}-3 y^{2}+z^{2}=2 \times(1)^{2}-3 \times(2)^{2}+(5)^{2}$

$$
\begin{aligned}
& =2 \times 1-3 \times 4+25 \\
& =2-12+25 \\
& =27-12 \\
& =15
\end{aligned}
$$

(f) $2 x^{2} y-5 y z+x y^{2}=2 \times(1)^{2} \times 2-5 \times 2 \times 5+1 \times(2)^{2}$

$$
\begin{aligned}
& =2 \times 1 \times 2-50+1 \times 4 \\
& =4-50+4 \\
& =8-50 \\
& =-42
\end{aligned}
$$

3. Given, $p=-2, q=-1$ and $r=3$, then
(a) $p-q-r=-2-(-1)-3$

$$
\begin{aligned}
& =-2+1-3 \\
& =-5+1 \\
& =-4
\end{aligned}
$$

(b) $p^{4}+q^{4}-r^{4}=(-2)^{4}+(-1)^{4}-(3)^{4}$

$$
\begin{aligned}
& =16+1-81 \\
& =17-81 \\
& =-64
\end{aligned}
$$

(c) $p^{2}+q^{2}-r^{2}=(-2)^{2}+(-1)^{2}-(3)^{2}$

$$
\begin{aligned}
& =4+1-9 \\
& =5-9 \\
& =-4
\end{aligned}
$$

(d) $2 p^{2}-q^{2}+3 r^{2}=2 \times(-2)^{2}-(-1)^{2}+3 \times(3)^{2}$

$$
\begin{aligned}
& =2 \times 4-1+3 \times 9 \\
& =8-1+27 \\
& =35-1 \\
& =34
\end{aligned}
$$

(e) $3 p^{2} q+5 p q^{2}+2 p q r$

$$
\begin{aligned}
& =3 \times(-2)^{2} \times(-1)+5 \times(-2) \times(-1)^{2}+2 \times(-2) \times(-1) \times 3 \\
& =3 \times 4 \times(-1)+5 \times(-2) \times 1+12 \\
& =-12-10+12 \\
& =-10
\end{aligned}
$$

(f) $p^{3}+q^{3}+r^{3}+3 p q r=(-2)^{3}+(-1)^{3}+(3)^{3}+3 \times(-2) \times(-1) \times 3$

$$
=-8+(-1)+27+18
$$

$$
=-8-1+27+18
$$

$$
=-9+45
$$

$$
=36
$$

4. (a) Coefficient of x^{3} in $x^{3}=1$
(b) Coefficient of z in $-7 x z=-7 x$
(c) Coefficient of x^{2} in $-x^{2}=-1$
(d) Coefficient of y^{2} in $8 x y^{2} z=8 x z$
5. (a) Numerical coefficient of $7 x y z=7$
(b) Numerical coefficient of $a b=1$
(c) Numerical coefficient of $-6 b c=-6$
(d) Numerical coefficient of $-2 x^{3} y^{2} z=-2$
6. (a) Constant term of $2 x^{2}-9=-9$
(b) Constant term of $3 x^{2}+5 x+8=8$
(c) Constant term of $z^{3}-2 z^{2}+z-\frac{8}{3}=-\frac{8}{3}$
(d) Constant term of $4 y^{2}-5 y+\frac{3}{5}=\frac{3}{5}$
7. (a) Monomial
(b) Monomial
(c) Monomial
(d) Binomial
(e) Monomial
(f) Trinomial
(g) Binomial
(h) Trinomial
(i) None
8. (a) $9 x^{3},-5 z^{4}, 7 x^{3} y,-x y z$
(b) $4 x^{5},-6 y^{4}, 7 x^{2} y,-9$

EXERCISE 8C

1. (a) $3 x+2 y$
(b) $3 x+7 x=(3+7) x$

$$
=10 x
$$

(c) $7 y+(-9 y)=7 y-9 y$

$$
\begin{aligned}
& =(7-9) y \\
& =-2 y
\end{aligned}
$$

(d) $2 x y+5 x y+(-x y)=2 x y+5 x y-x y$

$$
\begin{aligned}
& =(2+5-1) x y \\
& =6 x y
\end{aligned}
$$

(e) $2 x^{2}+\left(-3 x^{2}\right)+7 x^{2}=2 x^{2}-3 x^{2}+7 x^{2}$

$$
\begin{aligned}
& =(2-3+7) x^{2} \\
& =6 x^{2}
\end{aligned}
$$

(f) $6 a^{3}+\left(-4 a^{3}\right)+10 a^{3}+\left(-8 a^{3}\right)=6 a^{3}-4 a^{3}+10 a^{3}-8 a^{3}$

$$
=(6-4+10-8) a^{3}=4 a^{3}
$$

(g) $\left(x^{2}-a^{2}\right)+\left(-5 x^{2}+2 a^{2}\right)+\left(-4 x^{2}+4 a^{2}\right)$

$$
\begin{aligned}
& =x^{2}-a^{2}-5 x^{2}+2 a^{2}-4 x^{2}+4 a^{2} \\
& =x^{2}-5 x^{2}-4 x^{2}-a^{2}+2 a^{2}+4 a^{2} \\
& =(1-5-4) x^{2}+(-1+2+4) a^{2} \\
& =-8 x^{2}+5 a^{2}
\end{aligned}
$$

(h) $7 x y z+(-5 x y z)+9 x y z+(-8 x y z)$

$$
\begin{aligned}
& =7 x y z-5 x y z+9 x y z-8 x y z \\
& =(7-5+9-8) x y z \\
& =3 x y z
\end{aligned}
$$

2. (a) $m^{2}-4 m+5$
(b) 4xy5-7 $\quad z x$
$-2 m^{2}+6 m-6$

$-m^{2}-2 m-7$	
$-2 m^{2}$	-8

$5-$	$2 y y$	$\# z$	$z x$
2	$3 y$	$3 k z$	$z x$
$3-$	$x y 6$	$3 z$	$z x$

(c) $2 x^{2}-3 x y+y^{2}$

$$
\begin{array}{r}
-7 x^{2}-5 x y-2 y^{2} \\
4 x^{2}+x y-6 y^{2} \\
\hline-x^{2}-7 x y-7 y^{2} \\
\hline
\end{array}
$$

3. (a) $(8 a-6 a b+5 b)+(-6 a-a b-8 b)+(-4 a+2 a b+3 b)$

$$
\begin{aligned}
& =8 a-6 a b+5 b-6 a-a b-8 b-4 a+2 a b+3 b \\
& =8 a-6 a-4 a-6 a b-a b+2 a b+5 b-8 b+3 b \\
& =(8-6-4) a+(-6-1+2) a b+(5-8+3) b \\
& =-2 a-5 a b
\end{aligned}
$$

(b) $(3 a-2 b+5 c)+(2 a+5 b-7 c)+(-a-b+c)$

$$
\begin{aligned}
& =3 a-2 b+5 c+2 a+5 b-7 c-a-b+c \\
& =3 a-2 a-a-2 b+5 b-b+5 c-7 c+c \\
& =(3+2-1) a+(-2+5-1) b+(5-7+1) c \\
& =4 a+2 b-c
\end{aligned}
$$

(c) $\left(2+x-x^{2}+6 x^{3}\right)+\left(-6-2 x+4 x^{2}-3 x^{2}\right)+\left(2+x^{2}\right)$

$$
+\left(3-x^{3}+4 x-2 x^{2}\right)
$$

$$
=2+x-x^{2}+6 x^{3}-6-2 x+4 x^{2}-3 x^{2}+2+x^{2}+3-x^{3}+4 x-2 x^{2}
$$

$$
=2-6+2+3+x-2 x+4 x-x^{2}+4 x^{2}-3 x^{2}+x^{2}-2 x^{2}+6 x^{3}-x^{3}
$$

$$
=(2-6+2+3)+(1-2+4) x+(-1+4-3+1) x^{2}+(-2+6-1) x^{3}
$$

$$
=1+3 x+x^{2}+3 x^{3}
$$

(d) $\left(x^{3}+y^{3}-z^{3}+3 x y z\right)+\left(-x^{3}+y^{3}+z^{3}-6 x y z\right)+\left(x^{3}-y^{3}-z^{3}-8 x y z\right)$

$$
\begin{aligned}
& =x^{3}+y^{3}-z^{3}+3 x y z-x^{3}+y^{3}+z^{3}-6 x y z+x^{3}-y^{3}-z^{3}-8 x y z \\
& =x^{3}-x^{3}+x^{3}+y^{3}+y^{3}-y^{3}-z^{3}+z^{3}-z^{3}+3 x y z-6 x y z-8 x y z \\
& =(1-1+1) x^{3}+(1+1-1) y^{3}+(-1+1-1) z^{3}+(3-6-8) x y z \\
& =x^{3}+y^{3}-z^{3}-11 x y z
\end{aligned}
$$

(e) $\left(2 x^{2}-8 x y+7 y^{2}-8 x y^{2}\right)+\left(2 x y^{2}+6 x y-y^{2}+3 x^{2}\right)+$

$$
\left(4 y^{2}-x y-x^{2}+x y^{2}\right)
$$

$$
=2 x^{2}-8 x y+7 y^{2}-8 x y^{2}+2 x y^{2}+6 x y-y^{2}+3 x^{2}+4 y^{2}-x y-x^{2}+x y^{2}
$$

$$
=2 x^{2}+3 x^{2}-x^{2}-8 x y+6 x y-x y-8 x y^{2}+2 x y^{2}+x y^{2}+7 y^{2}-y^{2}+4 y^{2}
$$

$$
=(2+3-1) x^{2}+(-8+6-1) x y+(-8+2+1) x y^{2}+(7-1+4) y^{2}
$$

$$
=4 x^{2}-3 x y-5 x y^{2}+10 y^{2}
$$

(f) $\left(2 x^{3}-3 x^{2}+7 x-8\right)+\left(-5 x^{3}+2 x^{2}-4 x+1\right)+\left(3-6 x+5 x^{2}-x^{3}\right)$

$$
\begin{aligned}
& =2 x^{3}-3 x^{2}+7 x-8-5 x^{3}+2 x^{2}-4 x+1+3-6 x+5 x^{2}-x^{3} \\
& =2 x^{3}-5 x^{3}-x^{3}-3 x^{2}+2 x^{2}+5 x^{2}+7 x-4 x-6 x-8+1+3 \\
& =(2-5-1) x^{3}+(-3+2+5) x^{2}+(7-4-6) x+(-8+1+3) \\
& =-4 x^{3}+4 x^{2}-3 x-4
\end{aligned}
$$

4. (a) $5 b-3 a$
(b) $2 x-5 x=-3 x$
(c) $6 x y-(-x y)=6 x y+x y=7 x y$
(d) $-7 x^{2}-10 x^{2}=-17 x^{2}$
(e) $9 y-(-7 x)=9 y+7 x$
(f) $\left(b^{2}-a^{2}\right)-\left(a^{2}-b^{2}\right)=b^{2}-a^{2}-a^{2}+b^{2}=2 b^{2}-2 a^{2}$
5. (a) $5 a-2 b-3 c$

$$
\begin{array}{r}
\frac{-2 a+b}{+}{ }_{-}+6 d \\
\hline 7 a-3 b-3 c-6 d \\
\hline
\end{array}
$$

(c) $y^{3}-3 x y^{2}-4 x^{2} y$ $\begin{array}{r}\frac{-y^{3}+6 x y^{2}+2 x^{2} y+x^{3}}{} \\ \hline 2 y^{3}-9 x y^{2}-6 x^{2} y-x^{3} \\ \hline\end{array}$
(b)
(d) $4-5 x+6 x^{2}-8 x^{3}$

$$
\frac{-3+5 x-7 x^{2}+6 x^{3}}{7-10 x+13 x^{2}-14 x^{3}}
$$

(e) $7 x^{2}-2 x y-4 y^{2}$
(f) $-2 a+5 b-4 c$

$$
\frac{5_{-} x^{2}+3 x y+y^{2}}{2 x^{2}+x y-5 y^{2}}
$$

$$
\begin{gathered}
\frac{a-2 b-3 c}{+}+ \\
\hline-3 a+7 b-c \\
\hline
\end{gathered}
$$

(g) $73 a$

6. (a) $x^{4}-6 x^{3}+2 x-7+7 x^{3}-x+5 x^{2}+2-x^{4}$

$$
\begin{aligned}
& =x^{4}-x^{4}-6 x^{3}+7 x^{3}+5 x^{2}+2 x-x-7+2 \\
& =(1-1) x^{4}+(-6+7) x^{3}+5 x^{2}+(2-1) x+(-7+2) \\
& =x^{3}+5 x^{2}+x-5
\end{aligned}
$$

(b) $2 x^{2}-x y+6 x-4 y+5 x y-4 x+6 x^{2}+3 y$

$$
\begin{aligned}
& =2 x^{2}+5 x^{2}+6 x-4 x-x y+5 x y-4 y+3 y \\
& =(2+6) x^{2}+(6-4) x+(-1+5) x y+(-4+3) y \\
& =8 x^{2}+2 x+4 x y-y
\end{aligned}
$$

(c) $2 p^{3}-3 p^{2}+4 p-5-6 p^{3}+2 p^{2}-8 p-2+6 p+8$

$$
\begin{aligned}
& =2 p^{3}-6 p^{3}-3 p^{2}+2 p^{2}+4 p-8 p+6 p-5-2+8 \\
& =(2-6) p^{3}+(-3+2) p^{2}+(4-8+6) p+(-5-2+8) \\
& =-4 p^{3}-p^{2}+2 p+1
\end{aligned}
$$

7. $3 x^{2} 5$ 8

(Oadding)
$\frac{94 x^{2}+{ }_{-}^{7}{ }_{-}^{7}}{6 x^{2} 4 \frac{1}{2}}$
(Osubtracting)
8. $\left(x^{3}+3 x^{2}-x+1\right)-\left(5 x^{3}-2 x^{2}+6 x+7\right)$

$$
\begin{array}{r}
x^{3}+3 x^{2}-x+1 \\
5 x^{3}-2 x^{2}+6 x+7 \\
-\quad+\quad-\quad+5 x^{3}+5 x^{2}-7 x-6 \\
\hline-4 x^{3} \\
\hline
\end{array}
$$

9. Given, $A=7 x^{2}+5 x y-9 y^{2} ; B=-4 x^{2}+x y+5 y^{2} ; C=4 y^{2}-3 x^{2}-6 x y$ According to question,

$$
\begin{aligned}
\text { L.H.S. } & =A+B+C \\
& =\left(7 x^{2}+5 x y-9 y^{2}\right)+\left(-4 x^{2}+x y+5 y^{2}\right)+\left(4 y^{2}-3 x^{2}-6 x y\right) \\
& =7 x^{2}+5 x y-9 y^{2}-4 x^{2}+x y+5 y^{2}+4 y^{2}-3 x^{2}-6 x y \\
& =7 x^{2}-4 x^{2}-3 x^{2}+5 x y+x y-6 x y-9 y^{2}+5 y^{2}+4 y^{2} \\
& =(7-4-3) x^{2}+(5+1-6) x y+(-9+5+4) y^{2} \\
& =0 \times x^{2}+0 \times x y+0 \times y^{2} \\
& =0=\text { R.H.S. }
\end{aligned}
$$

10. $5 x-4 y+6 z$
$12 x-y+3 z$

$\frac{-8 x+y-2 z}{-3 x-3 y+4 z}$	$\frac{-3 x+5 y-8 z}{9 x+4 y-5 z}$

According to question,

$$
\begin{array}{r}
9 x+4 y-5 z \\
-3 x-3 y+4 z \\
+\quad+\quad+9 z \\
\hline 12 x+7 y-9 z \\
\hline
\end{array}
$$

11. $1-(2 x-3 y-4)=1-2 x+3 y+4$

$$
\begin{aligned}
& =1+4-1 x+3 y \\
& =5-2 x+3 y
\end{aligned}
$$

12. Required expression $=(2 x-3 y+4 z)-(2 x+5 y-6 z+2)$

$$
\begin{aligned}
& =2 x-3 y+4 z-2 x-5 y+6 z-2 \\
& =2 x-2 x-3 y-5 y+4 z+6 z-2 \\
& =(2-2) x+(-3-5) y+(4+6) z-2 \\
& =-8 y+10 z-2
\end{aligned}
$$

13. Required expression $=\left(a^{3}-4 a^{2}+5 a-6\right)-\left(a^{2}-2 a+1\right)$

$$
\begin{aligned}
& =a^{3}-4 a^{2}+5 a-6-a^{2}+2 a-1 \\
& =a^{3}-4 a^{2}-a^{2}+5 a+2 a-6-1 \\
& =a^{3}+(-4-1) a^{2}+(5+2) a+(-6-1) \\
& =a^{3}-5 a^{2}+7 a-7
\end{aligned}
$$

14. Required expression $=(x-2 y+3 z)-(2 x-4 y-z)$

$$
\begin{aligned}
& =x-2 y+3 z-2 x+4 y+z \\
& =x-2 x-2 y+4 y+3 z+z \\
& =(1-2) x+(-2+4) y+(3+1) z \\
& =-x+2 y+4 z
\end{aligned}
$$

15. Required expression $=\left(3 x^{2}-5 x+6\right)-\left(x^{3}-x^{2}+4 x-1\right)$

$$
\begin{aligned}
& =3 x^{2}-5 x+6-x^{3}+x^{2}-4 x+1 \\
& =-x^{3}+3 x^{2}+x^{2}-5 x-4 x+6+1 \\
& =-x^{3}+(3+1) x^{2}+(-5-4) x+(6+1) \\
& =-x^{3}+4 x^{2}-9 x+7
\end{aligned}
$$

EXERCISE 8D

1. $4 x-(3 y-x+2 z)=4 x-3 y+x-2 z$

$$
\begin{aligned}
& =4 x+x-3 y-2 z \\
& =5 x-3 y-2 z
\end{aligned}
$$

2. $a-(b-2 a)=a-b+2 a$

$$
=a+2 a-b=3 a-b
$$

3. $-3(a+b)+4(2 a-3 b)-(2 a-b)=-3 a-3 b+8 a-12 b-2 a+b$

$$
\begin{aligned}
& =-3 a+8 a-2 a-3 b-12 b+b \\
& =3 a-14 b
\end{aligned}
$$

4. $\left(a^{2}+b^{2}+2 a b\right)-\left(a^{2}+b^{2}-2 a b\right)=a^{2}+b^{2}+2 a b-a^{2}-b^{2}+2 a b$

$$
\begin{aligned}
& =a^{2}-a^{2}+b^{2}-b^{2}+2 a b+2 a b \\
& =4 a b
\end{aligned}
$$

5. $a-[2 b-\{3 a-(2 b-3 c)\}]=a-[2 b-\{3 a-2 b+3 c\}]$

$$
\begin{aligned}
& =a-[2 b-3 a+2 b-3 c] \\
& =a-[-3 a+2 b+2 b-3 c] \\
& =a+3 a-2 b-2 b+3 c \\
& =4 a-4 b+3 c
\end{aligned}
$$

6. $-x+[5 y-\{x-(5 y-2 x)\}]=-x+[5 y-\{x-5 y+2 x\}]$

$$
\begin{aligned}
& =-x+[5 y-\{x+2 x-5 y\}] \\
& =-x+[5 y-\{3 x-5 y\}] \\
& =-x+[5 y-3 x+5 y] \\
& =-x+5 y-3 x+5 y \\
& =-x-3 x+5 y+5 y \\
& =-4 x+10 y
\end{aligned}
$$

7. $-2\left(x^{2}-y^{2}+x y\right)-3\left(x^{2}+y^{2}-x y\right)$

$$
\begin{aligned}
& =-2 x^{2}+2 y^{2}-2 x y-3 x^{2}-3 y^{2}+3 x y \\
& =-2 x^{2}-3 x^{2}+2 y^{2}-3 y^{2}-2 x y+3 x y \\
& =-5 x^{2}-y^{2}+x y
\end{aligned}
$$

8. $-4 x^{2}+\left\{\left(2 x^{2}-3\right)-\left(4-3 x^{2}\right)\right\}=-4 x^{2}+\left\{2 x^{2}-3-4+3 x^{2}\right\}$

$$
\begin{aligned}
& =-4 x^{2}+\left\{2 x^{2}+3 x^{2}-3-4\right\} \\
& =-4 x^{2}+\left\{5 x^{2}-7\right\} \\
& =-4 x^{2}+5 x^{2}-7 \\
& =x^{2}-7
\end{aligned}
$$

9. $5 a-\left[a^{2}-\left\{2 a\left(1-a+4 a^{2}\right)-3 a\left(a^{2}-5 a-3\right)\right\}\right]-8 a$

$$
\begin{aligned}
& =5 a-\left[a^{2}-\left\{2 a-2 a^{2}+8 a^{3}-3 a^{3}+15 a^{2}+9 a\right\}\right]-8 a \\
& =5 a-\left[a^{2}-\left\{8 a^{3}-3 a^{3}-2 a^{2}+15 a^{2}+2 a+9 a\right\}\right]-8 a \\
& =5 a-\left[a^{2}-\left\{5 a^{3}+13 a^{2}+11 a\right\}\right]-8 a \\
& =5 a-\left[a^{2}-5 a^{3}-13 a^{2}-11 a\right]-8 a \\
& =5 a-a^{2}+5 a^{3}+13 a^{2}+11 a-8 a \\
& =5 a^{3}-a^{2}+13 a^{2}+5 a+11 a-8 a \\
& =5 a^{3}+12 a^{2}+8 a
\end{aligned}
$$

10. $3-\left[x-\left\{2 y-(5 x+y-3)+2 x^{2}\right\}-\left(x^{2}-3 y\right)\right]$

$$
\begin{aligned}
& =3-\left[x-\left\{2 y-5 x-y+3+2 x^{2}\right\}-x^{2}+3 y\right] \\
& =3-\left[x-\left\{2 x^{2}-5 x+2 y-y+3\right\}-x^{2}+3 y\right] \\
& =3-\left[x-\left\{2 x^{2}-5 x+y+3\right\}-x^{2}+3 y\right] \\
& =3-\left[x-2 x^{2}+5 x-y-3-x^{2}+3 y\right] \\
& =3-\left[-2 x^{2}-x^{2}+x+5 x-y+3 y-3\right] \\
& =3-\left[-3 x^{2}+6 x+2 y-3\right] \\
& =3+3 x^{2}-6 x-2 y+3 \\
& =3 x^{2}-6 x-2 y+6
\end{aligned}
$$

11. $x y-[y z-z x-\{y x-(3 y-x z)-(x y-z y)\}]$

$$
\begin{aligned}
& =x y-[y z-z x-\{y x-3 y+x z-x y+z y\}] \\
& =x y-[y z-z x-\{-y x+y x-3 y+z y+x z\}] \\
& =x y-[y z-z x-\{-3 y+z y+x z\}]
\end{aligned}
$$

$$
\begin{aligned}
& =x y-[y z-z x+3 y-z y-x z\}] \\
& =x y-[y z-z y-z x-x z+3 y\}] \\
& =x y-[-2 x z+3 y] \\
& =x y+2 x z-3 y
\end{aligned}
$$

12. $2 a-3 b-[3 a-2 b-\{a-c-(a-2 b)\}]$

$$
\begin{aligned}
& =2 a-3 b-[3 a-2 b-\{a-c-a+2 b\}] \\
& =2 a-3 b-[3 a-2 b-\{a-a+2 b-c\}] \\
& =2 a-3 b-[3 a-2 b-\{2 b-c\}] \\
& =2 a-3 b-[3 a-2 b-2 b+c] \\
& =2 a-3 b-3 a+2 b+2 b-c \\
& =2 a-3 a-3 b+2 b+2 b-c=-a+b-c
\end{aligned}
$$

13. $-a-[a+\{a+b-2 a-(a-2 b)\}-b]=-a-[a+\{a+b-2 a-a+2 b\}-b]$

$$
\begin{aligned}
& =-a-[a+\{a-2 a-a+b+2 b\}-b] \\
& =-a-[a+\{-2 a+3 b\}-b] \\
& =-a-[a-2 a+3 b-b] \\
& =-a-[-a+2 b] \\
& =-a+a-2 b=-2 b
\end{aligned}
$$

14. $5 x-[4 y-\{7 x-(3 z-2 y)+4 z-3(x+3 y-2 z)\}]$

$$
\begin{aligned}
& =5 x-[4 y-\{7 x-3 z+2 y+4 z-3 x-9 y+6 z\}] \\
& =5 x-[4 y-\{7 x-3 x+2 y-9 y-3 z+4 z+6 z\}] \\
& =5 x-[4 y-\{4 x-7 y+7 z\}] \\
& =5 x-[4 y-4 x+7 y-7 z] \\
& =5 x-4 y+4 x-7 y+7 z \\
& =5 x+4 x-4 y-7 y+7 z \\
& =9 x-11 y+7 z
\end{aligned}
$$

15. $2 a-[4 b-\{4 a-(3 b-\overline{2 a+2 b})\}]=2 a-[4 b-\{4 a-(3 b-2 a-2 b)\}]$

$$
\begin{aligned}
& =2 a-[4 b-\{4 a-3 b+2 a+2 b\}] \\
& =2 a-[4 b-\{4 a+2 a-3 b+2 b\}] \\
& =2 a-[4 b-\{6 a-b\}] \\
& =2 a-[4 b-6 a+b] \\
& =2 a-[-6 a+4 b+b] \\
& =2 a-[-6 a+5 b] \\
& =2 a+6 a-5 b \\
& =8 a-5 b
\end{aligned}
$$

HOTS

- Beads scattered on the table $=$ half of them $=\frac{1}{2}$

On the bed $=$ one-third $=\frac{1}{3}$
On the floor $=$ two-fifths $=\frac{2}{5}$
Left beads $=$ ten $=10$
$\therefore \quad$ Total number of beads of necklace $(x)=\frac{1}{2}+\frac{1}{3}+\frac{2}{5}+10$

VALUE BASED

- Strength of the primary class $=x$
$\therefore \quad$ Collected money $=15 \times x=15 x$
Strength of the secondary class $=y$
$\therefore \quad$ Collected money $=25 \times y=25 y$
$\therefore \quad$ Total collected money $=15 x+25 y$

= Chapter 9 Linear Equations

\qquad

EXERCISE 9A

1. Let the number be x, then
(a) $x-5=3$
(b) $25-x=7$
(c) $x+8=15$
(d) $5 x=40$
(e) $6 x=x+5$
(f) $4 x-3=17$
(g) $\frac{x}{8}=7$
(h) $19-2 x=11$
(i) $x-12=24$
(j) $3 x-5=16$
2. (a) Thrice the number y is 27 .
(b) 8 less from the number x is 16 .
(c) 3 less from twice the number x is 17 .
(d) 13 increased by thrice the number x is 19 .
(e) 14 times the number y decreased by 34 is 8 .
(f) Twice the number z divided by 3 is 8 .
3.

$\frac{z}{7}=8$
(b) Given, $8-7 y=1$
Putting $\quad z=56$
Putting $\quad y=1$
$\therefore \quad \frac{56}{7}=8$
$\begin{aligned} \therefore & 8-7 \times 1\end{aligned}=1$
$1=1$
LHS $=$ RHS Verified.
LHS = RHS Verified.
(c) Given, $5 x-8=2 x-2$

Putting $\quad x=2$
$\therefore \quad 5 \times 2-8=2 \times 2-2$

$$
\begin{aligned}
10-8 & =4-2 \\
2 & =2
\end{aligned}
$$

LHS = RHS Verified.
(d) Given, $3+2 x=9$

Putting $\quad x=3$
$\therefore \quad 3+2 \times 3=9$
$3+6=9$
$9=9$
LHS $=$ RHS Verified.
(e) Given, $3 x-5=7$

Putting $\quad x=4$
$\therefore \quad 3 \times 4-5=7$

$$
\begin{aligned}
12-5 & =7 \\
7 & =7
\end{aligned}
$$

LHS $=$ RHS \quad Verified.
4. (a) We try several values of x and find the values of LHS and the RHS.

We stop when for a particular value of x, LHS $=$ RHS .
[Note, the value of x can not be less than 7.]

\boldsymbol{x}	LHS	RHS
8	$8-7=1$	10
9	$9-7=2$	10
11	$11-7=4$	10
13	$13-7=6$	10
15	$15-7=8$	10
17	$17-7=10$	10

Thus, when $x=17$, we have : LHS = RHS.
$\therefore \quad x=17$ is the solution of the given equation.
(b) We try several values of y and find the values of LHS and the RHS.

We stop when for a particular value of $y, \mathrm{LHS}=$ RHS.

\boldsymbol{y}	LHS	RHS
1	$1+9=10$	13
2	$2+9=11$	13
3	$3+9=12$	13
4	$4+9=13$	13

Thus, when $y=4$, we have : LHS = RHS.
$\therefore \quad y=4$ is the solution of the given equation.
(c) We try several values of y and find the values of LHS and the RHS.

We stop when for a particular value of y, LHS $=$ RHS.
[Note, $3 \times 10=30(<36)$, so we will start with 10 because 30 is near to 36.]

\boldsymbol{y}	LHS	RHS
10	$3 \times 10=30$	36
11	$3 \times 11=33$	36
12	$3 \times 12=36$	36

Thus, when $y=12$, we have : LHS = RHS.
$\therefore \quad y=12$ is the solution of the given equation.
(d) We try several values of x and find the values of LHS and the RHS.

We stop when for a particular value of x, LHS $=$ RHS.

\boldsymbol{x}	LHS	RHS
1	$4 \times 1=4$	28
2	$4 \times 2=8$	28
3	$4 \times 3=12$	28
4	$4 \times 4=16$	28
5	$4 \times 5=20$	28
6	$4 \times 6=24$	28
7	$4 \times 7=28$	28

Thus, when $x=7$, we have : LHS $=$ RHS.
$\therefore x=7$ is the solution of the given equation.
(e) We try several values of x and find the values of LHS and the RHS.

We stop when for a particular value of x, LHS $=$ RHS .

\boldsymbol{x}	LHS	RHS
1	$2 \times 1-3=-1$	9
2	$2 \times 2-3=1$	9
3	$2 \times 3-3=3$	9
4	$2 \times 4-3=5$	9
6	$2 \times 6-3=9$	9

Thus, when $x=6$, we have : LHS $=$ RHS.
$\therefore x=6$ is the solution of the given equation.
(f) We try several values of x and find the values of LHS and the RHS.

We stop when for a particular value of x, LHS $=$ RHS.

\boldsymbol{x}	LHS	RHS
2	$11+2=13$	19
4	$11+4=15$	19
6	$11+6=17$	19
8	$11+8=19$	19

Thus, when $x=8$, we have : LHS $=$ RHS.
$\therefore x=8$ is the solution of the given equation.
(g) We try several values of x and find the values of LHS and the RHS. We stop when for a particular value of x, LHS $=$ RHS .

\boldsymbol{x}	LHS	RHS
2	$\frac{2}{3}$	4
4	$\frac{4}{3}$	4
6	$\frac{6}{3}=2$	4
8	$\frac{8}{3}$	4
10	$\frac{10}{3}$	4
12	$\frac{12}{3}=4$	4

Thus, when $x=12$, we have : LHS = RHS.
$\therefore x=12$ is the solution of the given equation.
(h) We try several values of x and find the values of LHS and the RHS.

We stop when for a particular value of x, LHS $=$ RHS.

\boldsymbol{x}	LHS	RHS
2	$\frac{2}{2}+7=1+7=8$	11
4	$\frac{4}{2}+7=2+7=9$	11
6	$\frac{6}{2}+7=3+7=10$	11
8	$\frac{8}{2}+7=4+7=11$	11

Thus, when $x=8$, we have : LHS $=$ RHS.
$\therefore x=8$ is the solution of the given equation.
(i) We try several values of x and find the values of LHS and the RHS.

We stop when for a particular value of x, LHS $=$ RHS.

\boldsymbol{z}	LHS	RHS
1	$1-3=-2$	$2 \times 1-5=2-5=-3$
2	$2-3=-1$	$2 \times 2-5=4-5=-1$

Thus, when $z=2$, we have : LHS = RHS.
$\therefore \quad z=2$ is the solution of the given equation.
(j) We try several values of y and find the values of LHS and the RHS. We stop when for a particular value of y, LHS $=$ RHS.

\boldsymbol{y}	LHS	RHS
1	$2 \times 1+4=2+4=6$	$3 \times 1=3$
2	$2 \times 2+4=4+4=8$	$3 \times 2=6$
3	$2 \times 3+4=6+4=10$	$3 \times 3=9$
4	$2 \times 4+4=8+4=12$	$3 \times 4=12$

Thus, when $y=4$, we have : LHS = RHS.
$\therefore \quad y=4$ is the solution of the given equation.

EXERCISE 9B

1. $x-2=-5$

$$
\begin{aligned}
x-2+2 & =-5+2 & \text { (adding } 2 \text { to both sides) } \\
x & =-3 &
\end{aligned}
$$

Check : Substituting $x=-3$ in the given equation.

$$
\begin{array}{rlrl}
& \mathrm{LHS}=-3-2=-5 \text { and } \mathrm{RHS}=-5 \\
\therefore & \text { LHS } & =\text { RHS, when } x=-3
\end{array}
$$

2. $x-7=6$

$$
\begin{aligned}
x-7+7 & =6+7 \\
x & =13
\end{aligned}
$$

(adding 7 to both sides)

Check : Substituting $x=13$ in the given equation.

$$
\begin{array}{ll}
& \text { LHS }=13-7=6 \text { and } \mathrm{RHS}=6 \\
\therefore & \text { LHS }=\text { RHS, when } x=13
\end{array}
$$

3. $x+3=-2$

$$
\begin{aligned}
x+3-3 & =-2-3 \quad \text { (substracting } 3 \text { from both sides) } \\
x & =-5
\end{aligned}
$$

Check : Substituting $x=-5$ in the given equation.

$$
\begin{array}{rlrl}
& \mathrm{LHS}=-3-2=-5 \text { and } \mathrm{RHS}=-2 \\
\therefore & \mathrm{LHS} & =\text { RHS, when } x=-5
\end{array}
$$

4. $x+5=12$

$$
\begin{aligned}
x+5-5 & =12-5 \quad \text { (substracting } 5 \text { from both sides) } \\
x & =7
\end{aligned}
$$

Check : Substituting $x=7$ in the given equation.

$$
\begin{array}{ll}
& \text { LHS }=7+5=12 \text { and } \mathrm{RHS}=12 \\
\therefore & \text { LHS }=\text { RHS, when } x=7
\end{array}
$$

5. $4 x+7=15$

$$
\begin{array}{rlrl}
4 x+7-7 & =15-7 & & \text { (substracting } 7 \text { from both sides) } \\
4 x & =8 & \\
\frac{4 x}{4} & =\frac{8}{4} & & \\
x & =2 & \text { (dividing both sides by } 4)
\end{array}
$$

Check : Substituting $x=2$ in the given equation.

$$
\begin{array}{rlrl}
& \text { LHS }=4 \times 2+7=8+7=15 \text { and } \mathrm{RHS}=15 \\
\therefore & & \text { LHS } & =\text { RHS, when } x=2
\end{array}
$$

6. $3 x-5=13$

$$
\begin{array}{rlrl}
3 x-5+5 & =13+5 & & \text { (adding } 5 \text { to both sides) } \\
3 x & =18 & \\
\frac{3 x}{3} & =\frac{18}{3} & \text { (dividing both sides by } 3) \\
x & =6 &
\end{array}
$$

Check : Substituting $x=6$ in the given equation.

$$
\begin{array}{rlrl}
& \text { LHS }=3 \times 6-5=18-5=13 \text { and RHS }=13 \\
\therefore & \text { LHS } & =\text { RHS, when } x=6
\end{array}
$$

7. $5 x-3=x+17$

$$
\begin{array}{rlrl}
5 x-3+3 & =x+17+3 & & \text { (adding } 3 \text { to both sides) } \\
5 x & =x+20 & & \\
5 x-x & =x+20-x & \text { (substracting } x \text { from both sides) } \\
4 x & =20 & \\
\frac{4 x}{4} & =\frac{20}{4} & \text { (dividing both sides by 4) } \\
x & =5 & &
\end{array}
$$

Check : Substituting $x=5$ in the given equation.

$$
\begin{aligned}
& \mathrm{LHS}=5 \times 5-3=25-3=22 \text { and } \mathrm{RHS}=5+17=22 \\
\therefore & \text { LHS }=\text { RHS, when } x=5
\end{aligned}
$$

8. $\frac{x}{5}=12$

$$
\begin{aligned}
\frac{x}{5} \times 5 & =12 \times 5 \quad(\text { multiplying both sides by } 5) \\
x & =60
\end{aligned}
$$

Check : Substituting $x=60$ in the given equation.

$$
\begin{array}{ll}
& \text { LHS }=\frac{60}{5}=12 \text { and } \text { RHS }=60 \\
\therefore & \text { LHS }=\text { RHS, when } x=60
\end{array}
$$

9. $\frac{3 x}{5}=15$

$$
\begin{array}{rlr}
\frac{3 x}{5} \times 5 & =15 \times 5 & \text { (multiplying both sides by } 5) \\
3 x & =75 & \\
\frac{3 x}{3} & =\frac{75}{3} & \\
x & =25 & \text { (dividing both sides by } 3) \\
\end{array}
$$

Check : Substituting $x=25$ in the given equation.

$$
\mathrm{LHS}=\frac{3 \times 25}{5}=15 \text { and } \mathrm{RHS}=15
$$

$\therefore \quad$ LHS $=$ RHS, when $x=25$
10. $\frac{x}{4}-8=1$

$$
\begin{array}{rlr}
\frac{x}{4}-8+8 & =1+8 & \quad \text { (adding } 8 \text { to both sides) } \\
\frac{x}{4} & =9 & \\
\frac{x}{4} \times 4 & =9 \times 4 \\
x & =36 & \text { (multiplying both sides by } 4 \text {) }
\end{array}
$$

Check : Substituting $x=36$ in the given equation.

$$
\begin{aligned}
& \text { LHS }=\frac{x}{4}-8=\frac{36}{4}-8=9-8=1 \text { and RHS }=1 \\
& \therefore \quad \text { LHS }
\end{aligned}=\text { RHS, when } x=36
$$

11. $2 x-\frac{1}{2}=3$

$$
\begin{aligned}
2 x & =3+\frac{1}{2} \\
2 x & =\frac{6+1}{2} \\
2 x & =\frac{7}{2} \\
\frac{2 x}{2} & =\frac{7}{2 \times 2}
\end{aligned}
$$

$$
\text { (transposing } \frac{1}{2} \text { to RHS) }
$$

$$
x=\frac{7}{4}
$$

Check: Substituting $x=\frac{7}{4}$ in the given equation.

$$
\begin{aligned}
\mathrm{LHS} & =2 \times \frac{7}{4}-\frac{1}{2}=\frac{7}{2}-\frac{1}{2}=\frac{7-1}{2}=\frac{6}{2}=3 \text { and } \mathrm{RHS}=3 \\
\therefore \quad & \mathrm{LHS}
\end{aligned}=\text { RHS, when } x=3 \mathrm{l}
$$

12. $\frac{x}{2}=\frac{x}{3}+1$

$$
\begin{array}{rlr}
\frac{x}{2}-\frac{x}{3} & =1 & \quad \text { (transposing } \frac{x}{3} \text { to LHS) } \\
\frac{3 x-2 x}{6} & =1 \\
\frac{x}{6} & =1 & \\
\frac{x}{6} \times 6 & =1 \times 6 \quad \text { (multiplying both sides by } 6 \text {) } \\
x & =6
\end{array}
$$

Check : Substituting $x=6$ in the given equation.

$$
\begin{aligned}
& \text { LHS }=\frac{6}{2}=3 \text { and } \mathrm{RHS}=\frac{6}{3}+1=2+1=3 \\
\therefore & \text { LHS }=\text { RHS, when } x=6
\end{aligned}
$$

13. $3(x+6)=24$

$$
\begin{array}{rlr}
\frac{3(x+6)}{3} & =\frac{24}{3} & \text { (dividing both sides by } 3) \\
x+6 & =8 & \\
x & =8-6 & \text { (transposing } 6 \text { to RHS) } \\
x & =2 &
\end{array}
$$

Check : Substituting $x=2$ in the given equation.

$$
\mathrm{LHS}=3(2+6)=3 \times 8=24 \text { and } \mathrm{RHS}=24
$$

$\therefore \quad$ LHS $=$ RHS, when $x=2$
14. $6 x+5=2 x+17$

$$
\begin{array}{rlrl}
6 x-2 x & =17-5 & (\text { transposing } 2 x \text { to LHS and } 5 \text { to RHS) } \\
4 x & =12 & \\
\frac{4 x}{4} & =\frac{12}{4} & & \\
x & =3 & &
\end{array}
$$

Check : Substituting $x=3$ in the given equation.

$$
\begin{array}{ll}
& \text { LHS }=6 \times 3+5=18+5=23 \\
\text { and } & \text { RHS }=2 \times 3+17=6+17=23 \\
\therefore &
\end{array}
$$

15. $3(2-5 x)-2(1-6 x)=1$

$$
\begin{array}{rlrl}
6-15 x-2+12 x & =1 & & \text { (removing parentheses) } \\
-3 x+4 & =1 & & \\
-3 x & =1-4 & \text { (transposing } 4 \text { to RHS) } \\
-3 x & =-3 & & \\
x & =1 & \text { (dividing both sides by }-3 \text {) }
\end{array}
$$

Check : Substituting $x=1$ in the given equation.

$$
\begin{aligned}
& \text { LHS }=3(2-5 \times 1)-2(1-6 \times 1) \\
& =3(2-5)-2(1-6) \\
& =3 \times(-3)-2 \times(-5) \\
& =-9+10=1 \\
& \text { RHS }=1 \\
& \therefore \quad \text { LHS }=\text { RHS, when } x=1
\end{aligned}
$$

and
16. $3(x+6)+2(x+3)=64$

$$
\begin{aligned}
3 x+18+2 x+6 & =64 & & \text { (removing parentheses) } \\
5 x+24 & =64 & & \\
5 x & =64-24 & & \text { (transposing } 24 \text { to RHS) } \\
5 x & =40 & & \\
\frac{5 x}{5} & =\frac{40}{5} & & \text { (dividing both sides by } 5 \text {) } \\
x & =8 & &
\end{aligned}
$$

Check : Substituting $x=8$ in the given equation.

$$
\begin{aligned}
\text { LHS } & =3(8+6)+2(8+3) \\
& =3 \times 14+2 \times 11 \\
& =42+22 \\
& =64
\end{aligned}
$$

and
RHS $=64$
$\therefore \quad$ LHS $=$ RHS, when $x=8$
17. $16(3 x-5)-10(4 x-8)=40$

$$
\begin{array}{rlr}
48 x-80-40 x+80 & =40 & \text { (removing parentheses) } \\
8 x & =40 &
\end{array}
$$

$$
\begin{aligned}
\frac{8 x}{8} & =\frac{40}{8} \\
x & =5
\end{aligned}
$$

Check : Substituting $x=5$ in the given equation.

$$
\begin{aligned}
\mathrm{LHS} & =16(3 \times 5-5)-10(4 \times 5-8) \\
& =16(15-5)-10(20-8) \\
& =16 \times 10-10 \times 12 \\
& =160-120=40 \\
\text { and } \quad & \text { RHS }
\end{aligned}=40
$$

and \quad RHS $=40$
18. $6(1-4 x)+7(2+5 x)=53$

$$
\begin{array}{rlrl}
6-24 x+14+35 x & =53 & & \text { (removing parentheses) } \\
11 x+20 & =53 & & \text { (transposing } 20 \text { to RHS) } \\
11 x & =53-20 & & \\
11 x & =33 & \text { (dividing both sides by } 11 \text {) } \\
\frac{11 x}{11} & =\frac{33}{11} & & \\
x & =3 & &
\end{array}
$$

Check : Substituting $x=3$ in the given equation.

$$
\begin{aligned}
\mathrm{LHS} & =6(1-4 \times 3)+7(2+5 \times 3) \\
& =6(1-12)+7(2+15) \\
& =6 \times(-11)+7 \times 17 \\
& =-66+119=53
\end{aligned}
$$

and
RHS $=53$
$\therefore \quad$ LHS $=$ RHS, when $x=3$
19. $5(x-1)+2(x+3)+6=0$

$$
\begin{array}{rlr}
5 x-5+2 x+6+6 & =0 & \text { (removing parentheses) } \\
7 x+7 & =0 & \\
7 x & =-7 & \text { (transposing 7 to RHS) } \\
x & =-1 & \text { (dividing both sides by 7) }
\end{array}
$$

Check : Substituting $x=-1$ in the given equation.

$$
\begin{aligned}
\text { LHS } & =5(-1-1)+2(-1+3)+6 \\
& =5 \times(-2)+2 \times 2+6 \\
& =-10+4+6 \\
& =0
\end{aligned}
$$

$$
\begin{array}{ll}
\text { and } & \text { RHS }=0 \\
\therefore & \text { LHS }=\text { RHS, when } x=-1
\end{array}
$$

20. $\frac{3 x}{10}-4=14$

$$
\begin{array}{rlr}
\frac{3 x}{10} & =14+4 & \quad \text { (transposing } 4 \text { to RHS) } \\
\frac{3 x}{10} & =18 & \\
\frac{3 x}{10} \times 10 & =18 \times 10 & \\
3 x & =180 & \\
\frac{3 x}{3} & =\frac{180}{3} & \\
x & =60 &
\end{array}
$$

Check : Substituting $x=60$ in the given equation.

$$
\begin{aligned}
\text { LHS } & =\frac{3 \times 60}{10}-4 \\
& =18-4 \\
& =14 \\
\text { and } \quad & =\text { RHS }
\end{aligned}=14
$$

21. $\frac{3}{4}(x-1)=x-3$

$$
\begin{aligned}
\frac{3}{4}(x-1) \times 4 & =(x-3) \times 4 \quad \text { (multiplying both sides by } 4) \\
3(x-1) & =4(x-3) \\
3 x-3 & =4 x-12 \quad \text { (removing parentheses) } \\
3 x-4 x & =-12+3 \text { (transposing }-3 \text { to RHS and }-12 \text { to LHS) } \\
-x & =-9 \quad(\text { dividing both sides by }-1) \\
x & =9
\end{aligned}
$$

Check : Substituting $x=9$ in the given equation.

$$
\begin{array}{ll}
& \text { LHS }=\frac{3}{4}(9-1)=\frac{3}{4} \times 8=6 \\
\text { and } & \text { RHS }=9-3=6 \\
\therefore & \text { LHS }=\text { RHS, when } x=9
\end{array}
$$

22. $\frac{x-3}{5}-2=\frac{2 x}{5}$

$$
\begin{array}{rlr}
\frac{x-3}{5}-\frac{2 x}{5} & =2 \quad\left(\text { transposing }-2 \text { to RHS and } \frac{2 x}{5} \text { to LHS }\right) \\
\frac{x-3-2 x}{5} & =2 & \\
\frac{-x-3}{5} & =2 & \\
\frac{-x-3}{5} \times 5 & =2 \times 5 & \\
-x-3 & =10 & \\
-x & =10+3 \\
-x & =13 \\
x & =-13 & \\
\text { (multiplying both sides by } 5) \\
\end{array}
$$

Check : Substituting $x=-13$ in the given equation.

$$
\text { LHS }=\frac{-13-3}{5}-2=\frac{-16}{5}-2=\frac{-16-10}{5}=\frac{-26}{5}
$$

and

$$
\mathrm{RHS}=\frac{2 \times(-13)}{5}=\frac{-26}{5}
$$

$$
\therefore \quad \text { LHS }=\text { RHS, when } x=-13
$$

23. $\frac{n}{4}-5=\frac{n}{6}+\frac{1}{2}$

$$
\begin{aligned}
\frac{n}{4}-\frac{n}{6} & =\frac{1}{2}+5 \quad\left(\text { transposing }-5 \text { to RHS and } \frac{n}{6} \text { to LHS }\right) \\
\frac{3 n-2 n}{12} & =\frac{1+10}{2} \\
\frac{n}{12} & =\frac{11}{2} \\
\frac{n}{12} \times 12 & \left.=\frac{11}{2} \times 12 \quad \quad \text { (multiplying both sides by } 12\right) \\
n & =66
\end{aligned}
$$

Check : Substituting $n=66$ in the given equation.

$$
\begin{array}{lll}
& \text { LHS }=\frac{66}{4}-5=\frac{33}{2}-5=\frac{33-10}{2}=\frac{23}{2} \\
\text { and } & \mathrm{RHS}=\frac{66}{6}+\frac{1}{2}=\frac{11}{1}+\frac{1}{2}=\frac{22+1}{2}=\frac{23}{2} \\
\therefore & \text { LHS } & =\text { RHS, when } n=66
\end{array}
$$

24. $\frac{2 m}{3}+8=\frac{m}{2}-1$

$$
\begin{aligned}
\frac{2 m}{3}-\frac{m}{2} & =-1-8 \\
\frac{4 m-3 m}{6} & =-9 \\
\frac{m}{6} & =-9 \\
\frac{m}{6} \times 6 & =-9 \times 6 \\
m & =-54
\end{aligned}
$$

Check : Substituting $m=-54$ in the given equation.

$$
\text { LHS }=\frac{2 \times(-54)}{3}+8=-36+8=-28
$$

and

$$
\text { RHS }=\frac{-54}{2}-1=-27-1=-28
$$

$\therefore \quad$ LHS $=$ RHS, when $m=-54$
25. $\frac{2 x}{5}-\frac{3}{2}=\frac{x}{2}+1$

$$
\begin{array}{rlrl}
\frac{2 x}{5}-\frac{x}{2} & =1+\frac{3}{2} & \left(\text { transposing }-\frac{3}{2} \text { to RHS and } \frac{x}{2}\right. \text { to LHS) } \\
\frac{4 x-5 x}{10} & =\frac{2+3}{2} & \\
\frac{-x}{10} & =\frac{5}{2} & \\
\frac{-x}{10} \times 10 & =\frac{5}{2} \times 10 & \\
-x & =25 & \\
x & =-25 & \text { (multiplying both sides by } 10) \\
& \\
& \\
\text { (dividing both sides by }-1)
\end{array}
$$

Check : Substituting $x=-25$ in the given equation.

$$
\begin{array}{ll}
& \text { LHS }=\frac{2 \times(-25)}{5}-\frac{3}{2}=-10-\frac{3}{2}=\frac{-20-3}{2}=\frac{-23}{2} \\
\text { and } & \text { RHS }=\frac{-25}{2}+1=\frac{-25+2}{2}=\frac{-23}{2} \\
\therefore & \text { LHS }=\text { RHS, when } x=-25
\end{array}
$$

EXERCISE 9C

1. Let the three consecutive natural numbers be $x,(x+1)$ and $(x+2)$.

According to given condition,

$$
\begin{aligned}
x+x+1+x+2 & =114 \\
3 x+3 & =114 \\
3 x & =114-3 \\
3 x & =111 \\
x & =\frac{111}{3} \\
x & =37
\end{aligned}
$$

So, $x=37, x+1=37+1=38$ and $x+2=37+2=39$
Hence, the required three natural numbers are 37,38 and 39 .
2. Let the number be x.

According to given condition,

$$
\begin{aligned}
5 x & =x+80 \\
5 x-x & =80 \\
4 x & =80 \\
x & =\frac{80}{4} \\
x & =20
\end{aligned}
$$

Hence, the required number is 20 .
3. Let the number be x.

According to given condition,

$$
\begin{aligned}
4 x-11 & =89 \\
4 x & =89+11 \\
4 x & =100 \\
x & =\frac{100}{4} \\
x & =25
\end{aligned}
$$

Hence, 25 is required number.
4. Let the number be y.

According to given condition,

$$
\begin{aligned}
y+9 & =36 \\
y & =36-9 \\
y & =27
\end{aligned}
$$

Hence, the required number is 27 .
5. Let the number be x and $5 x$.

According to given condition,

$$
\begin{aligned}
5 x-x & =132 \\
4 x & =132 \\
x & =\frac{132}{4} \\
x & =33
\end{aligned}
$$

Hence, the required number are 33 and $5 \times 33=165$.
6. Let the one of the number be x and other is $3 x$.

According to given condition,

$$
\begin{aligned}
3 x+x & =124 \\
4 x & =124 \\
x & =\frac{124}{4} \\
x & =31
\end{aligned}
$$

So, $x=31$ and $3 x=3 \times 31=93$
Hence, the required numbers are 31 and 93.
7. Let the number be x.

According to given condition,

$$
\begin{aligned}
3 x+5 & =50 \\
3 x & =50-5 \\
3 x & =45 \\
x & =\frac{45}{3} \\
x & =15
\end{aligned}
$$

Hence, the required number is 15 .
8. Let the one of the numbers be x and other be y, where $x>y$.

According to given conditions,
and

$$
\begin{aligned}
x-y & =18 \\
x & =18+y \\
x+y & =92 \\
18+y+y & =92 \\
18+2 y & =92 \\
2 y & =92-18 \\
2 y & =74 \\
y & =\frac{74}{2}
\end{aligned}
$$

$$
y=37
$$

So, $\quad x=18+y=18+37=55$
Hence, the required numbers are 37 and 55 .
9. Let the number be a.

According to given condition,

$$
\begin{aligned}
17 a+4 & =225 \\
17 a & =225-4 \\
17 a & =221 \\
a & =\frac{221}{17} \\
a & =13
\end{aligned}
$$

Hence, required number is 13 .
10. Let the three consecutive odd numbers be $x,(x+2)$ and $(x+4)$.

According to given condition,

$$
\begin{aligned}
x+x+2+x+4 & =21 \\
3 x+6 & =21 \\
3 x & =21-6 \\
3 x & =15 \\
x & =\frac{15}{3} \\
x & =5
\end{aligned}
$$

So, $x=5$ and $x+2=5+2=7, x+4=5+4=9$
Hence, the three consecutive odd numbers are 5, 7 and 9 .
11. Let the two consecutive even numbers be x and $x+2$.

According to given condition,

$$
\begin{aligned}
x+x+2 & =74 \\
2 x+2 & =74 \\
2 x & =74-2 \\
2 x & =72 \\
x & =\frac{72}{2} \\
x & =36
\end{aligned}
$$

So, $x=36$ and $x+2=36+2=38$
Hence, two consecutive even numbers are 36 and 38 .
12. Let the age of Asha be x years and the age of her mother be $(x+27)$ years.

After 8 years.
Age of Asha $=(x+8)$ years

$$
\begin{aligned}
\text { Age of her mother } & =(x+27+8) \text { years } \\
& =(x+35) \text { years }
\end{aligned}
$$

According to given condition,

$$
\begin{aligned}
x+35 & =2(x+8) \\
x+35 & =2 x+16 \\
2 x-x & =35-16 \\
x & =19
\end{aligned}
$$

Hence, the age of Asha $=19$ years
the age of her mother $=(19+27)$ years $=46$ years
13. Let the age of Reena's brother be x years and the age of Reena be $(x+6)$ years.
According to given condition,

$$
\begin{aligned}
x+x+6 & =28 \\
2 x+6 & =28 \\
2 x & =28-6 \\
2 x & =22 \\
x & =\frac{22}{2} \\
x & =11
\end{aligned}
$$

Hence, the age of Reena's brother $=11$ years

$$
\text { the age of Reena }=11+6 \text { years }=17 \text { years }
$$

14. Let the age of Harsh be x years and the age of Sobit be $2 x$ years.

According to given condition,

$$
\begin{aligned}
2 x-x & =11 \\
x & =11
\end{aligned}
$$

Hence, the age of Harsh $=11$ years

$$
\text { the age of Sobit }=2 \times 11 \text { years }=22 \text { years }
$$

15. Let the age of son be x years and the age of man be $3 x$ years.

5 years ago,
The age of son $=(x-5)$ years
The age of man $=(3 x-5)$ years
According to given condition,

$$
\begin{aligned}
3 x-5 & =4(x-5) \\
3 x-5 & =4 x-20 \\
3 x-4 x & =20-5 \\
x & =15
\end{aligned}
$$

Hence, the age of Son $=15$ years the age of man $=3 \times 15$ years $=45$ years
16. Let the age of son be x years and the age of man be $4 x$ years.

After 16 years,
The age of son $=(x+16)$ years
The age of man $=(4 x+16)$ years
According to given condition,

$$
\begin{aligned}
4 x+16 & =2(x+16) \\
4 x+16 & =2 x+32 \\
4 x-2 x & =32-16 \\
2 x & =16 \\
x & =\frac{16}{2} \\
x & =8
\end{aligned}
$$

Hence, the age of Son $=8$ years

$$
\text { the age of man }=4 \times 8 \text { years }=32 \text { years }
$$

17. Let the age of Neeraj be x years.

8 years ago, the age of Neeraj be $=(x-8)$ years.
After 32 years, the age of Neeraj $=(x+32)$ years.
According to given condition,

$$
\begin{aligned}
5(x-8) & =x+32 \\
5 x-40 & =x+32 \\
5 x-x & =32+40 \\
4 x & =72 \\
x & =\frac{72}{4}=18
\end{aligned}
$$

Hence, Neeraj is 18 years old today.
18. Let the age of Anuradha be x years.

Age of Anuradha after 16 years $=(x+16)$ years.
According to given condition,

$$
\begin{aligned}
3 x & =x+16 \\
3 x-x & =16 \\
2 x & =16 \\
x & =\frac{16}{2} \\
x & =8
\end{aligned}
$$

Hence, Anuradha's present age is 8 years.
19. Let the breadth of the rectangular hall be x metres and the length be $(x+5)$ metres.
According to given condition,

$$
\begin{aligned}
\text { Perimeter } & =74 \text { metres } \\
2[x+(x+5)] & =74 \\
x+x+5 & =\frac{74}{2}
\end{aligned}
$$

$$
2 x+5=37
$$

$$
2 x=37-5
$$

$$
2 x=32
$$

$$
x=\frac{32}{2}
$$

$$
x=16
$$

Hence, the breadth of rectangular hall $=16$ metres and the length of rectangular hall $=16+5$ metres $=21$ metres
20. Let the breadth of the rectangular park be x metres and the length be $3 x$ metres.
According to given condition,

$$
\begin{aligned}
\text { Perimeter } & =168 \text { metres } \\
2(x+3 x) & =168 \\
2 \times 4 x & =168 \\
8 x & =168 \\
x & =\frac{168}{8} \\
x & =21
\end{aligned}
$$

Hence, the breadth of rectangular park $=21$ metres and the length of rectangular hall $=3 \times 21$ metres $=63$ metres

HOTS

- Number $=x$

One-third of number $=\frac{1}{3}$ of $x=\frac{1}{3} \times x=\frac{x}{3}$
One-half of one-third of number $=\frac{1}{2}$ of $\frac{x}{3}=\frac{1}{2} \times \frac{x}{3}=\frac{x}{6}$
According to question, $\quad \frac{x}{6}=6$
$\therefore \quad x=6 \times 6$
$\Rightarrow \quad x=36$
Hence, the number is 36 .

VALUE BASED

- Suppose the number of saplings planted by school B is x.

Number of saplings planted by school $A=45$
According to question,

$$
\begin{aligned}
2 x+3 & =45 \\
2 x & =45-3=42 \\
x & =\frac{42}{2} \Rightarrow x=21
\end{aligned}
$$

Hence, 21 saplings planted by school B.

- Chapter 10 Ratio, Proportion and Unitary Method

EXERCISE 10A

1. (a) $8: 104=\frac{8}{104}=\frac{8 \div 8}{104 \div 8}$
(HCF of 8 and 104 is 8)

$$
=\frac{1}{13}
$$

$\therefore \quad 8: 104=1: 13$
(b) $104: 168=\frac{104}{168}=\frac{104 \div 8}{168 \div 8}$
(HCF of 104 and 168 is 8)

$$
=\frac{13}{21}
$$

$$
\therefore \quad 104: 168=13: 21
$$

(c) $120: 150=\frac{120}{150}=\frac{120 \div 30}{150 \div 30}$
(HCF of 120 and 150 is 30)

$$
=\frac{4}{5}
$$

$$
\therefore \quad 120: 150=4: 5
$$

(d) $186: 403=\frac{186}{384}=\frac{186 \div 31}{384 \div 31}(\mathrm{HCF}$ of 186 and 403 is 31$)$

$$
=\frac{6}{13}
$$

$$
\therefore \quad 186: 403=6: 13
$$

(e) $480: 384=\frac{480}{184}=\frac{480 \div 96}{184 \div 96}$
(HCF of 480 and 384 is 96)

$$
=\frac{5}{4}
$$

$$
\therefore \quad 480: 384=5: 4
$$

(f) $777: 1147=\frac{777}{1147}=\frac{777 \div 37}{1147 \div 37}$
(HCF of 777 and 1147 is 37)

$$
=\frac{21}{31}
$$

$\therefore \quad 777: 1147=21: 31$
2. (a) $24: 36=\frac{24}{36}=\frac{24 \div 12}{36 \div 12}$

$$
=\frac{2}{3}
$$

(b) 84 paise : ${ }^{`} 3=84$ paise : 3×100 paise

$$
\begin{aligned}
& =84 \text { paise }: 300 \text { paise } \\
& =\frac{84}{300}=\frac{84 \div 12}{300 \div 12} \\
& =\frac{7}{25}
\end{aligned}
$$

(HCF of 8 and 104 is 8)

$$
\therefore \quad 24: 36=2: 3
$$

$\therefore 84$ paise : ${ }^{`} 3=7: 25$
(c) $7 \mathrm{~kg}: 420 \mathrm{~g}=7 \times 1000 \mathrm{~g}: 420 \mathrm{~g}=7000 \mathrm{~g}: 420 \mathrm{~g}$

$$
\begin{aligned}
& =\frac{7000}{420}=\frac{7000 \div 140}{420 \div 140} \quad(\mathrm{HCF} \text { of } 7000 \text { and } 420 \text { is } 140) \\
& =\frac{50}{3}
\end{aligned}
$$

$\therefore 7 \mathrm{~kg}: 420 \mathrm{~g}=50: 3$
(d) $48 l: 5 \mathrm{kl}=48 l: 5 \times 1000 l=48 l: 5000 l$

$$
\begin{aligned}
& =\frac{48}{5000}=\frac{48 \div 8}{5000 \div 8} \\
& =\frac{6}{625}
\end{aligned}
$$

(HCF of 48 and 5000 is 8)
$\therefore 48 l: 5 \mathrm{kl}=6: 625$
(e) 40 minutes : 2 hours $=40$ minutes : 2×60 minutes

$$
\begin{aligned}
& =40 \text { minutes }: 120 \text { minutes } \\
& =\frac{40}{120}=\frac{40 \div 40}{120 \div 40} \quad(\mathrm{HCF} \text { of } 40 \text { and } 120 \text { is } 40) \\
& =\frac{1}{3}
\end{aligned}
$$

$\therefore 40$ minutes : 2 hours $=1: 3$
(f) $2.4 \mathrm{~km}: 900 \mathrm{~m}=2.4 \times 1000 \mathrm{~m}: 900 \mathrm{~m}$

$$
=2400 \mathrm{~m}: 900 \mathrm{~m}
$$

$$
\begin{aligned}
& =\frac{2400}{900}=\frac{2400 \div 300}{900 \div 300} \quad(\mathrm{HCF} \text { of } 2400 \text { and } 900 \text { is } 300) \\
& =\frac{8}{3}
\end{aligned}
$$

$\therefore 2.4 \mathrm{~km}: 900 \mathrm{~m}=8: 3$
3. (a) $3 \mathrm{~m} 5 \mathrm{~cm}: 35 \mathrm{~cm}=3 \times 100 \mathrm{~m}+5 \mathrm{~cm}: 35 \mathrm{~cm}$

$$
\begin{aligned}
& =300 \mathrm{~cm}+5 \mathrm{~cm}: 35 \mathrm{~cm}=305 \mathrm{~cm}: 35 \mathrm{~cm} \\
& =\frac{305}{35}=\frac{305 \div 5}{35 \div 5} \quad(\text { HCF of } 305 \text { and } 5 \text { is } 5) \\
& =\frac{61}{7}
\end{aligned}
$$

$\therefore 3 \mathrm{~m} \mathrm{5cm}: 35 \mathrm{~cm}=61: 7$
(b) `\(6.30:` 16.80=\frac{6.30}{16.80}=\frac{6.30 \div 120}{16.80 \div 120} \quad(\mathrm{HCF}\) of 630 and 1680 is 210$)$

$$
=\frac{3}{8}
$$

$\therefore \quad$ ' $6.30:{ }^{`} 16.80=3: 8$
(c) 3 weeks : 30 days $=3 \times 7$ days : 30 days

$$
\begin{aligned}
& =21 \text { days }: 30 \text { days } \\
& =\frac{21}{30}=\frac{21 \div 3}{30 \div 3} \\
& =\frac{7}{10}
\end{aligned} \quad(\text { HCF of } 21 \text { and } 30 \text { is } 3)
$$

$\therefore 3$ weeks : 30 days $=7: 10$
(d) $1 l 35 \mathrm{ml}: 270 \mathrm{ml}=100 \mathrm{ml}+35 \mathrm{ml}: 270 \mathrm{ml}$

$$
\begin{aligned}
& =1035 \mathrm{ml}: 270 \mathrm{ml} \\
& =\frac{1035}{270}=\frac{1035 \div 45}{270 \div 45} \quad(\text { HCF of } 1035 \text { and } 270 \text { is } 45) \\
& =\frac{23}{6}
\end{aligned}
$$

$\therefore 1 l 35 \mathrm{ml}: 270 \mathrm{ml}=23: 6$
(e) $4 \mathrm{~kg}: 2 \mathrm{~kg} 500 \mathrm{~g}=4 \times 1000 \mathrm{~g}: 2 \times 1000 \mathrm{~g}+500 \mathrm{~g}$

$$
\begin{aligned}
& =4000 \mathrm{~g}: 2000 \mathrm{~g}+500 \mathrm{~g}=4000 \mathrm{~g}: 2500 \mathrm{~g} \\
& =\frac{4000}{2500}=\frac{4000 \div 500}{2500 \div 500}(\mathrm{HCF} \text { of } 4000 \text { and } 2500 \text { is } 500) \\
& =\frac{8}{5}
\end{aligned}
$$

$\therefore 4 \mathrm{~kg}: 2 \mathrm{~kg} 500 \mathrm{~g}=8: 5$
(f) $48 \mathrm{~min}: 2$ hours $40 \mathrm{~min}=48 \mathrm{~min}: 2 \times 60 \mathrm{~min}+40 \mathrm{~min}$

$$
\begin{aligned}
& =48 \min : 120 \min +40 \mathrm{~min} \\
& =48 \min : 160 \mathrm{~min} \\
& =\frac{48}{160}=\frac{48 \div 16}{160 \div 16}(H C F \text { of } 48 \text { and } 160 \text { is } 16) \\
& =\frac{3}{10}
\end{aligned}
$$

$\therefore 48 \mathrm{~min}: 2$ hours $40 \mathrm{~min}=3: 10$
4. Mr. Arya's monthly income $=$ ' 16800

Mrs Arya's monthly income =` 10500 Total income of both \(=` 16800+` 10500=` 27300\)
(a) Ratio of Mr. Arya's income to his wife's income $=$ ' 16800 : ' 10500

$$
\begin{aligned}
& =\frac{16800}{10500}=\frac{16800 \div 2100}{10500 \div 2100} \quad(\because \mathrm{HCF}=2100) \\
& =\frac{8}{5}
\end{aligned}
$$

Hence, the required ratio of Mr. Arya's income to his wife's income is $8: 5$.
(b) Ratio of Mrs. Arya's income to her husband's income

$$
\begin{aligned}
& =` 10500: ` 16800 \\
& =\frac{10500}{16800}=\frac{10500 \div 2100}{16800 \div 2100} \quad(\because \mathrm{HCF}=2100) \\
& =\frac{5}{8}
\end{aligned}
$$

Hence, the required ratio of Mrs. Arya's income to her husband's income is $5: 8$.
(c) Ratio of Mr. Arya's income to the total income of the two

$$
\begin{aligned}
& =` 16800: ` 27300 \\
& =\frac{16800}{27300}=\frac{16800 \div 2100}{27300 \div 2100} \quad(\because \mathrm{HCF}=2100) \\
& =\frac{8}{13}
\end{aligned}
$$

Hence, the ratio of Mr. Arya's income to the total income of both is 8: 13 .
5. Raj's earning $=` 15300$

His savings $=` 1224$
$\therefore \quad$ His expenditure $=` 15300-` 1224=` 14076$
(a) Ratio of his income and expenditure $={ }^{`} 15300$: $^{`} 14076$

$$
\begin{aligned}
& =\frac{15300}{14076}=\frac{15300 \div 612}{14076 \div 612} \quad(\because \mathrm{HCF}=612) \\
& =\frac{25}{23}
\end{aligned}
$$

Hence, the ratio of Raj's income and expenditure is $25: 23$.
(b) Ratio of his income and savings $={ }^{`} 15300 \div{ }^{`} 1224$

$$
\begin{aligned}
& =\frac{15300}{1224}=\frac{15300 \div 612}{1224 \div 612} \quad(\because \mathrm{HCF}=612) \\
& =\frac{25}{2}
\end{aligned}
$$

Hence, ratio of Raj's income and savings is $25: 2$.
(c) Ratio of his expenditure and savings =` 14076 : \({ }^{`} 1224=\frac{14076}{1224}\)

$$
\begin{aligned}
& =\frac{14076 \div 612}{1224 \div 612} \quad(\because \mathrm{HCF}=612) \\
& =\frac{23}{2}
\end{aligned}
$$

Hence, ratio of Raj's income and savings is $23: 2$.
6. Ratio of boys and girls in the school $=9: 5$

Let the number of boys in the school be $9 x$ and the number of girls be $5 x$.
Then,

$$
\begin{aligned}
9 x+5 x & =448 \\
14 x & =448 \\
x & =\frac{448}{14} \\
x & =32
\end{aligned}
$$

$\therefore \quad$ Number of girls in the school $=5 \times 32=160$ girls.
7. Ratio of number of male and female workers $=5: 3$

Let the number of male workers be $5 x$ and female be $3 x$.
Given, number of male workers $=115$

$$
\begin{aligned}
5 x & =115 \\
x & =\frac{115}{5} \\
x & =23
\end{aligned}
$$

\therefore Number of female workers $=3 \times 23=69$ female workers.
8. Let Kunal gets $4 x$ and Kavita gets $7 x$ part of ` 77 .

Now,

$$
4 x+7 x=77
$$

$$
\begin{aligned}
11 x & =77 \\
x & =\frac{77}{11} \\
x & =7
\end{aligned}
$$

Hence, Kunal gets the part of money $=`(4 \times 7)=` 28$
and Kavita gets the part of money $=`(7 \times 7)=` 49$
9. Let X gets `\(2 x, Y\) gets` $3 x$ and Z gets ` $5 x$ part of the money.

Now,

$$
\begin{aligned}
2 x+3 x+5 x & =1020 \\
10 x & =1020 \\
x & =\frac{1020}{10} \\
x & =102
\end{aligned}
$$

Hence, X gets the part of money $=`(2 \times 102)=` 204$
Y gets the part of money $=`(3 \times 102)=` 306$
Z gets the part of money $=`(5 \times 102)=` 510$
10. Ratio of numbers $=11: 12$

Let the numbers be $11 x$ and $12 x$.
According to given condition,

$$
\begin{aligned}
11 x+12 x & =460 \\
23 x & =460 \\
x & =\frac{460}{23} \\
x & =20
\end{aligned}
$$

Hence, one number $=11 \times 20=220$
and other number $=12 \times 20=240$
11. Ratio of length and width of a field $=5: 3$

Let the length be $5 x \mathrm{~m}$ and width be $3 x$ of the field.
Given, width of the field $=42$ metres

$$
\begin{aligned}
3 x & =42 \\
x & =\frac{42}{3} \\
x & =14
\end{aligned}
$$

Hence, length of field $=5 \times 14$ metres $=70$ metres
12. Ratio of parts of segment $=4: 3$

Let the first of the segment be $4 x$ and the other part be $3 x$.
Given, total length of line segment $=35 \mathrm{~cm}$

$$
4 x+3 x=35
$$

$$
\begin{aligned}
7 x & =35 \\
x & =\frac{35}{7} \\
x & =5
\end{aligned}
$$

Hence, length of first part $=4 \times 5$ metres $=20$ metres

$$
\text { length of other part }=3 \times 5 \text { metres }=15 \text { metres }
$$

13. Ratio of income to the expenditure $=7: 6$

Let the income of the family be $7 x$ and expenditure be $6 x$.
Given, income of family $=` 14000$

$$
\begin{aligned}
7 x & =14000 \\
x & =\frac{14000}{7} \\
x & =2000
\end{aligned}
$$

Hence, expenditure of the family $=`(6 \times 2000)$

$$
=` 12000
$$

$\therefore \quad$ Savings of the family $=$ income - expenditure

$$
\begin{aligned}
& =` 14000-` 12000 \\
& =` 2000
\end{aligned}
$$

14. Ratio of zinc and copper in alloy $=7: 9$

Let the weight of zinc be $7 x \mathrm{~kg}$ and the weight of copper be $9 x \mathrm{~kg}$ in the alloy.
Given, the weight of copper in alloy $=11.7 \mathrm{~kg}$

$$
\begin{aligned}
9 x & =11.7 \mathrm{~kg} \\
x & =\frac{11.7}{9} \mathrm{~kg} \\
x & =1.3 \mathrm{~kg}
\end{aligned}
$$

Hence, the weight of zinc in alloy $=(7 \times 1.3) \mathrm{kg}=9.1 \mathrm{~kg}$
15. (a) We can write,

$$
1: 2=\frac{1}{2} \text { and } 13: 27=\frac{13}{27}
$$

On converting unlike fractions into like fractions, we get

$$
\frac{1}{2}=\frac{1 \times 27}{2 \times 27}=\frac{27}{54} \text { and } \frac{13}{27}=\frac{13 \times 2}{27 \times 2}=\frac{26}{54}
$$

(Since, LCM of 2 and 27 is 54)
Clearly,

$$
\frac{27}{54}>\frac{26}{54}, \text { since } 27>26
$$

or

$$
\frac{1}{2}>\frac{13}{27}
$$

Hence,

$$
1: 2>13: 27
$$

(b) We can write,

$$
3: 7=\frac{3}{7} \text { and } 4: 9=\frac{4}{9}
$$

On converting unlike fractions into like fractions, we get

$$
\frac{3}{7}=\frac{3 \times 9}{7 \times 9}=\frac{27}{63} \text { and } \frac{4}{9}=\frac{4 \times 7}{9 \times 7}=\frac{28}{63}
$$

(Since, LCM of 7 and 9 is 63)
Clearly, $\quad \frac{27}{63}<\frac{28}{63}$, since $27<28$
or

$$
\frac{3}{7}<\frac{4}{9}
$$

Hence,

$$
3: 7<4: 9
$$

(c) We can write,

$$
5: 12=\frac{5}{12} \text { and } 17: 30=\frac{17}{30}
$$

On converting unlike fractions into like fractions, we get

$$
\begin{aligned}
\frac{5}{12}=\frac{5 \times 5}{12 \times 5}=\frac{25}{60} \text { and } \frac{17}{30}= & \frac{17 \times 2}{30 \times 2}=\frac{34}{60} \\
& (\text { Since, } L C M \text { of } 12 \text { and } 30 \text { is } 60)
\end{aligned}
$$

Clearly, $\frac{25}{60}<\frac{34}{60}$, since $25<34$
or $\frac{5}{12}<\frac{17}{30}$
Hence,

$$
5: 12<17: 30
$$

16. (a) $\frac{5}{7}=\frac{x}{28}=\frac{35}{y}$

Let $\quad \frac{5}{7}=\frac{x}{28} \Rightarrow 7 x=5 \times 28 \Rightarrow x=\frac{5 \times 28}{7}=20$
$\therefore \quad \frac{5}{7}=\frac{20}{28}$
Again, let $\frac{28}{28}=\frac{35}{y} \Rightarrow 20 y=28 \times 35 \Rightarrow y=\frac{28 \times 35}{20}=49$
$\therefore \quad \frac{20}{28}=\frac{35}{49}$

Hene, $\frac{5}{7}=\frac{20}{28}=\frac{35}{49}$
(b) $\frac{24}{40}=\frac{x}{5}=\frac{12}{y}$

Let $\quad \frac{24}{40}=\frac{x}{5} \Rightarrow 40 x=24 \times 5 \Rightarrow x=\frac{24 \times 5}{40}=3$
$\therefore \quad \frac{24}{40}=\frac{3}{5}$
Again, let $\frac{3}{5}=\frac{12}{y} \Rightarrow 3 y=5 \times 12 \Rightarrow y=\frac{5 \times 12}{3}=20$
$\therefore \quad \frac{3}{5}=\frac{12}{20}$
Hene, $\quad \frac{24}{40}=\frac{3}{5}=\frac{12}{20}$
(c) $\frac{36}{63}=\frac{4}{x}=\frac{y}{21}$

Let $\frac{36}{63}=\frac{4}{x} \Rightarrow 36 x=63 \times 4 \Rightarrow x=\frac{63 \times 4}{36}=7$
$\therefore \quad \frac{36}{63}=\frac{4}{7}$
Again, let $\frac{4}{7}=\frac{y}{21} \Rightarrow 7 y=4 \times 21 \Rightarrow y=\frac{4 \times 21}{7}=12$
$\therefore \quad \frac{4}{7}=\frac{12}{21}$
Hene, $\quad \frac{36}{63}=\frac{4}{7}=\frac{12}{21}$

EXERCISE 10B

1. (a) Product of extremes $=13 \times 12=156$

Product of means $=15 \times 18=270$
\therefore Product of extremes \neq Product of means
Hence, 13, 15, 18, 12 are not in proportion.
(b) Product of extremes $=2 \times 42=84$

Product of means $=7 \times 12=84$
\therefore Product of extremes $=$ Product of means
Hence, 2, 7, 12, 42 are in proportion.
(c) Product of extremes $=21 \times 40=840$

Product of means $=35 \times 24=840$
\therefore Product of extremes $=$ Product of means
Hence, 21, 35, 24, 40 are in proportion.
(d) Product of extremes $=33 \times 96=3168$

Product of means $=121 \times 9=1089$
\therefore Product of extremes \neq Product of means
Hence, 33, 121, 9, 96 are not in proportion.
(e) Product of extremes $=30 \times 35=1050$

Product of means $=25 \times 42=1050$
\therefore Product of extremes $=$ Product of means
Hence, 30, 25, 42, 35 are in proportion.
(f) Product of extremes $=150 \times 300=45000$

Product of means $=200 \times 250=50000$
\therefore Product of extremes \neq Product of means
Hence, 150, 200, 250, 300 are not in proportion.
2. (a) Product of extremes $=39 \times 235=9165$

Product of means $=65 \times 141=9165$
\therefore Product of extremes $=$ Product of means
Verified.
(b) Product of extremes $=60 \times 147=8820$

Product of means $=105 \times 84=8820$
\therefore Product of extremes $=$ Product of means
Verified.
(c) Product of extremes $=91 \times 136=12376$

Product of means $=104 \times 119=12376$
\therefore Product of extremes $=$ Product of means
Verified.
(d) Product of extremes $=108 \times 86=9288$

Product of means $=72 \times 129=9288$
\therefore Product of extremes $=$ Product of means
Verified.
3. (a) Product of extremes $=$ Product of means

$$
\begin{array}{rrr}
\Rightarrow & 27 \times 84=x \times 63 \\
\Rightarrow & x=\frac{27 \times 84}{63} \\
\Rightarrow & x=36
\end{array}
$$

(b) Product of extremes = Product of means

$$
\begin{array}{rr}
\Rightarrow & 55 \times 6=11 \times x \\
\Rightarrow & x=\frac{55 \times 6}{11}
\end{array}
$$

$$
\Rightarrow \quad x=30
$$

(c) Product of extremes $=$ Product of means

$$
\begin{array}{rr}
\Rightarrow & x \times 116=92 \times 87 \\
\Rightarrow & x=\frac{92 \times 87}{116}
\end{array}
$$

$$
\Rightarrow \quad x=69
$$

(d) Product of extremes $=$ Product of means

$$
\begin{array}{rr}
\Rightarrow & 51 \times x=85 \times 57 \\
\Rightarrow & x=\frac{85 \times 57}{51}
\end{array}
$$

$$
\Rightarrow \quad x=95
$$

4. (a) $2 \mathrm{~kg}: 80 \mathrm{~kg}=\frac{2 \mathrm{~kg}}{80 \mathrm{~kg}}=\frac{2}{80}=\frac{1}{40}$
$25 \mathrm{~g}: 625 \mathrm{~g}=\frac{25 \mathrm{~g}}{625 \mathrm{~g}}=\frac{25}{625}=\frac{1}{25}$
$\because \quad \frac{1}{40} \neq \frac{1}{25}$
Hence, $2 \mathrm{~kg}: 80 \mathrm{~kg}$ and $25 \mathrm{~g}: 625 \mathrm{~g}$ are not in proportion.
(b) $25 \mathrm{~cm}: 1 \mathrm{~m}=\frac{25 \mathrm{~cm}}{1 \mathrm{~m}}=\frac{25 \mathrm{~cm}}{100 \mathrm{~cm}}=\frac{25}{100}=\frac{1}{4}$
` 40 : \(\quad 160=\frac{` 40}{`} 160=\frac{40}{160}=\frac{1}{4}\) \(\because \quad \frac{1}{4}=\frac{1}{4}\) Hence, \(25 \mathrm{~cm}: 1 \mathrm{~m}\) and ` 40 : `160 are in proportion. (c) \(200 \mathrm{ml}: 2.5 l=\frac{200 \mathrm{ml}}{2.5 l}=\frac{200 \mathrm{ml}}{2500 \mathrm{ml}}=\frac{200}{2500}=\frac{2}{25}\)` 40 : $\quad 500=\frac{` 40}{`} 500=\frac{40}{500}=\frac{2}{25}$
$\because \quad \frac{2}{25}=\frac{2}{25}$
Hence, $200 \mathrm{ml}: 2.5 l$ and `40 :` 500 are in proportion.
(d) 52 litres: 91 litres $=\frac{52 \text { litres }}{91 \text { litres }}=\frac{52}{91}=\frac{4}{7}$

16 bottles : 28 bottles $=\frac{16 \text { bottles }}{28 \text { bottles }}=\frac{16}{28}=\frac{4}{7}$

$$
\because \quad \frac{4}{7}=\frac{4}{7}
$$

Hence, 52 litres : 91 litres and 16 bottles : 28 bottles are in proportion.
5. (a) $36: 45=\frac{36}{45}=\frac{4}{5}$
(b) $51: 68=\frac{51}{68}=\frac{3}{4}$
$80: 100=\frac{80}{100}=\frac{4}{5}$
$85: 102=\frac{85}{102}=\frac{5}{6}$
Hence, it is true.
Hence, it is false.
(c) The ratio of two quantities is defined only when they are in same unit. Hence, it is false.
(d) $45 \mathrm{~km}: 60 \mathrm{~km}=\frac{45 \mathrm{~km}}{60 \mathrm{~km}}=\frac{45}{60}=\frac{3}{4}$
$12 \mathrm{~h}: 15 \mathrm{~h}=\frac{12 \mathrm{~h}}{15 \mathrm{~h}}=\frac{12}{15}=\frac{4}{5}$
Hence, it is false.
(e) $81 \mathrm{~kg}: 45 \mathrm{~kg}=\frac{81 \mathrm{~kg}}{45 \mathrm{~kg}}=\frac{81}{45}=\frac{9}{5}$

18 men : 10 men $=\frac{18 \text { men }}{10 \text { men }}=\frac{18}{10}=\frac{9}{5}$
Hence, it is true.
(f) 30 bags : 18 bags $=\frac{30 \text { bags }}{18 \text { bags }}=\frac{30}{18}=\frac{5}{3}$
` 450 : \({ }^{`} 270=\frac{` 450}{`} 270 ~=\frac{450}{270}=\frac{5}{3}\)
Hence, it is true.
6. We know, if a, b, c are in continued proportion, then

$$
b^{2}=a c
$$

(a) $a=36, b=90, c=225$

$$
\begin{aligned}
b^{2} & =(90)^{2}=90 \times 90=8100 \\
a c & =36 \times 225=8100 \\
\therefore \quad & b^{2}
\end{aligned}=a c
$$

Hence, 36, 90, 225 are in continued proportion.
(b) $a=16, b=84, c=441$

$$
b^{2}=(84)^{2}=84 \times 84=7056
$$

$$
\begin{array}{rlrl}
& & a c & =16 \times 441=7056 \\
\therefore & b^{2} & =a c
\end{array}
$$

Hence, 16, 84, 441 are in continued proportion.
(c) $a=48, b=60, c=75$

$$
\begin{aligned}
b^{2} & =(60)^{2}=60 \times 60=3600 \\
a c & =48 \times 75=3600 \\
\therefore \quad & b^{2}
\end{aligned}=a c
$$

Hence, 48, 60, 75 are in continued proportion.
7. Let the third term be x.

So, $\quad 20: 28:: x: 49$
Product of extremes $=$ Product of means
$\Rightarrow \quad 20 \times 49=28 \times x$
$\Rightarrow \quad x=\frac{20 \times 49}{28}$
$\Rightarrow \quad x=35$
Hence, the 3rd term is 35 .
8. Let the 2 nd term be x.

So, $\quad 12: x:: 8: 14$
Product of extremes $=$ Product of means
$\begin{aligned} \Rightarrow & 12 \times 14 & =x \times 8 \\ \Rightarrow & x & =\frac{12 \times 14}{8}\end{aligned}$
$\Rightarrow \quad x=21$
Hence, the 2nd term is 21 .

EXERCISE 10C

1. Cost of 9 kg of rice $=` 327.60$

Cost of 1 kg of rice $=` \frac{327.60}{9}=` 36.40$
So, Cost of 50 kg of rice $={ }^{`}(36.40 \times 50)={ }^{`} 1820$
Hence, the cost of 50 kg of rice will be ` 1820 . 2. Cost of 14 m of cloth \(=` 1890\)

Cost of 1 m of cloth $=` \frac{1890}{14}=` 135$
So, Cost of 6 m of cloth $=`(135 \times 6)=` 810$
Hence, the cost of 6 m of cloth will be ` 810 . 3. Cost of 12 soaps \((1\) dozen \()=` 285.60\)

Cost of 1 soap $=` \frac{285.60}{12}=` 23.80$
So, Cost of 15 such soaps $=`(23.80 \times 15)=` 357.00$
Hence, the cost of 15 soaps will be ` 357.00 .
4. Distance covered by car in $12 l$ of diesel $=222 \mathrm{~km}$

Distance covered by car in $1 l$ of diesel $=\frac{222}{12} \mathrm{~km}=18.5 \mathrm{~km}$
So, distance covered by car in $22 l$ of diesel $=(18.5 \times 22) \mathrm{km}=407 \mathrm{~km}$ Hence, 407 km will be covered by car in $22 l$ of diesel.
5. Charge for carring 25 tonnes of weight $=` 540$

Charge for carring 1 tonn of weight $=` \frac{540}{25}=` 21.60$
So, charge for carring 35 tonnes of weight $=`(21.60 \times 35)=` 756$
Hence, the transport company will charge ` 756 to carry 35 tonnes of weight.
6. 22.5 m of a uniform iron rod weighs $=85.5 \mathrm{~kg}$

1 m of a uniform iron rod weighs $=\frac{85.5}{22.5} \mathrm{~kg}=3.8 \mathrm{~kg}$
So, 5 m of a uniform iron rod weighs $=(3.8 \times 5) \mathrm{kg}=19 \mathrm{~kg}$
Hence, the weight of 5 m of the same rod will be 19 kg .
7. 15 tins contain the oil $=234 \mathrm{~kg}$

1 tins contains the oil $=\frac{234}{15} \mathrm{~kg}=15.6 \mathrm{~kg}$
So, 10 tins contain the oil $=(15.6 \times 10) \mathrm{kg}=156 \mathrm{~kg}$
Hence, 10 tins will contain 156 kg of oil.
8. Number of bananas purchased for ${ }^{`} 104=4$ dozen bananas

$$
=(4 \times 12) \text { bananas }
$$

Number of bananas purchased for $={ }^{\prime}\left(\frac{4 \times 12}{104}\right)$ bananas $=\frac{6}{13}$ bananas
So, number of bananas purchased for ${ }^{`} 6.50=\left(\frac{6}{13} \times 6.50\right)$ bananas

$$
=3 \text { bananas }
$$

Hence, 3 bananas can be purchased for ${ }^{`} 6.50$.
9. Number of chairs bought for ${ }^{`} 22770=18$ chairs

Number of chairs bought for ' $1=\frac{18}{22770}$ chairs
So, number of chairs bought for ${ }^{`} 10120=\left(\frac{18}{22770} \times 10120\right)$ chairs

$$
=8 \text { chairs }
$$

Hence, 8 cahirs can be bought for ` 10120 . 10. Number of inland letters bought for \({ }^{`} 87.50=35\)

Number of inland letters bought for ${ }^{`} 1=\frac{35}{87.50}$
So, number of inland letters bought for ' $315=\frac{35}{87.50} \times 315=126$
Hence, 126 inland letters can be bought for ` 315.
11. Weight of copper in 4.5 g of an alloy $=3.5 \mathrm{~g}$

Weight of copper in 1 g of alloy $=\frac{3.5}{4.5} \mathrm{~g}=\frac{7}{9} \mathrm{~g}$
So, weight of copper in 18.9 g of a alloy $\left(\frac{7}{9} \times 18.9\right) \mathrm{g}=14.7 \mathrm{~g}$
Hence, there will be 14.7 g of copper in 18.9 g of alloy.
12. Number of boxes needed for 6000 pens $=48$

Number of boxes needed for 1 pen $=\frac{48}{6000}$
So, number of boxes needed for 1875 pens $=\frac{48}{6000} \times 1875=15$
Hence, 15 boxes will be needed for 1875 pens.
13. 24 workers can build the wall in $=15$ days.

1 workers can build the wall in $=(15 \times 24)$ days
So, 9 workers can build the wall in $=\left(\frac{15 \times 24}{9}\right)$ days $=40$ days
Hence, 9 workers will take 40 days to build the wall.
14. Number of men to finish a piece of work in 26 days $=40$

Number of men to finish a piece of work in 1 day $=40 \times 26$
So, number of men to finish a piece of work in 16 days $=\frac{40 \times 26}{16}=65$
Hence, 65 men will be needed to finish the piece of work in 16 days.
15. The provisions of 550 men for $=28$ days

The provisions of 1 man for $=(28 \times 550)$ days
So, provisions of 700 men for $=\left(\frac{28 \times 550}{700}\right)$ days $=22$ days
Hence, the provisions will be lasted for 22 days.
16. (a) Car travels 195 km in $=3$ hours

Car travels 1 km in $=\frac{3}{195}$ hours
So, car will travel 520 km in $=\left(\frac{3}{195} \times 520\right)$ hours $=8$ hours
Hence, car will take 8 hours to travel 520 km .
(b) Distance covered by car in 3 hours $=195 \mathrm{~km}$

Distance covered by car in 1 hour $=\frac{195}{3} \mathrm{~km}=65 \mathrm{~km}$
So, distance covered by car in 7 hours $=(65 \times 7) \mathrm{km}=455 \mathrm{~km}$
Hence, car will travel 455 km in 7 hours with the same speed.
17. (a) Labourer earns in 12 days $=` 1980$

Labourer earns in 1 days $=` \frac{1980}{12}=` 165$
So, labourer earn in 7 days $=`(165 \times 7)={ }^{`} 1155$
Hence, the labourer will earn ` 1155 in 7 days. (b) Labourer earns \({ }^{`} 1980\) in $=12$ days

Labourer earns `1 in \(=\frac{12}{1980}\) days So, labourer earns` $2640=\left(\frac{12}{1980} \times 2640\right)$ days $=16$ days
Hence, the labourer will earn ` 2640 in 16 days.
18. (a) Weight of 65 books $=13 \mathrm{~kg}$

Weight of 1 book $=\frac{13}{65} \mathrm{~kg}$
So, weight of 80 such books $=\left(\frac{13}{65} \times 80\right) \mathrm{kg}=16 \mathrm{~kg}$
Hence, the weight of 80 books is 16 kg .
(b) Number of books weighing $13 \mathrm{~kg}=65$ book

Number of books weighing $1 \mathrm{~kg}=\frac{65}{13}$ books $=5$ books
So, number of books weighing $6.4 \mathrm{~kg}=(5 \times 6.4)$ books $=32$ books Hence, 32 books weigh 6.4 kg .

EXERCISE 10D

1. $92: 115=\frac{92}{115}=\frac{92 \div 23}{115 \div 23}$
(HCF of 92 and 115 is 23)

$$
=\frac{4}{5}
$$

\therefore (d) is correct.
2. Product of extremes $=$ Product of means
$\Rightarrow \quad 4 \times 35=5 \times x$
$\Rightarrow \quad x=\frac{4 \times 35}{5}$
$\Rightarrow \quad x=28$
\therefore (c) is correct.
3. Product of extremes $=$ Product of means
$\Rightarrow \quad 57 \times 85=x \times 51$
$\Rightarrow \quad x=\frac{57 \times 85}{51}$
$\Rightarrow \quad x=95$
\therefore (a) is correct.
4. Product of extremes $=$ Product of means

$$
\begin{array}{rr}
\Rightarrow & 25 \times x=35 \times 45 \\
\Rightarrow & x=\frac{35 \times 45}{25} \\
\Rightarrow & x=63
\end{array}
$$

\therefore (a) is correct.
5. (b)
6. (b)
7. Let the number of boys be $12 x$ and number of girls be $5 x$.

Given, number of girls $=840$

$$
\begin{aligned}
5 x & =840 \\
x & =\frac{840}{5}=168
\end{aligned}
$$

\therefore Total strength of school $=12 x+5 x=17 x$

$$
\begin{aligned}
& =17 \times 168 \\
& =2856
\end{aligned}
$$

\therefore (c) is correct.
8. Let the sides of triangle be $x, 3 x$ and $5 x$.

Given, Perimeter of triangle $=90 \mathrm{~cm}$

$$
\begin{aligned}
\because \quad \text { sum of all sides } & =90 \mathrm{~cm} \\
\therefore \quad x+3 x+5 x & =90 \mathrm{~cm} \\
9 x & =90 \mathrm{~cm} \\
x & =\frac{90}{9} \mathrm{~cm}=10 \mathrm{~cm}
\end{aligned}
$$

\therefore Largest side $=5 x=5 \times 10 \mathrm{~cm}=50 \mathrm{~cm}$
\therefore (b) is correct.
9. Let the share of A be $8 x$ and the share of B be $11 x$.

$$
\therefore \quad \begin{aligned}
8 x+11 x & =` 760 \\
19 x & =` 760 \\
x & =` \frac{760}{19}=` 40
\end{aligned}
$$

$\therefore \quad B '$ s share $=11 x=`(11 \times 40)=` 440$
\therefore (a) is correct.
10. Let the first number be $5 x$ and other number be $7 x$.
$\because \quad$ Sum of these numbers $=252$

$$
\therefore \quad \begin{aligned}
5 x+7 x & =252 \\
12 x & =252 \\
x & =\frac{252}{12}=21
\end{aligned}
$$

$\therefore \quad$ Larger number $=7 x=7 \times 21=147$
\therefore (d) is correct.
11. Car covers in $6 l$ of petrol $=111 \mathrm{~km}$

Car covers in $1 l$ of petrol $=\frac{111}{6} \mathrm{~km}=18.5 \mathrm{~km}$
So, car covers in $10 l$ of petrol $=(18.5 \times 10) \mathrm{km}$

$$
=185 \mathrm{~km}
$$

\therefore (b) is correct.
12. Number of men to finish the piece of work in 26 days $=40$

Number of men to finish the piece of work in 1 day $=(40 \times 26)$
So, number of men to finish the piece of work in 20 days $=\frac{40 \times 26}{20}=52$
\therefore (a) is correct.
13. Cost of 12 pens $={ }^{`} 138$

Cost of 1 pen $=` \frac{138}{12}=` \frac{23}{2}$
So, cost of 14 pens $=`\left(\frac{23}{2} \times 14\right)=` 161$
\therefore (b) is correct.
14. 24 workers build a wall in $=15$ days

1 worker builds a wall in $=(15 \times 24)$ days
So, 8 workers build a wall in $=\frac{15 \times 24}{8}$ days $=45$ days
\therefore (b) is correct.
15. 550 men had provisions for $=28$ days

1 man had provisions for $=(28 \times 550)$ days

$$
=15400 \text { days }
$$

So, 700 men will have provisions for $=\frac{15400}{700}$ days $=22$ days
\therefore (a) is correct.
16. Let the angles of triangle be $3 x, x$ and $2 x$.
$\therefore \quad \angle 1+\angle 2+\angle 3=180^{\circ}$
$\Rightarrow \quad 3 x+x+2 x=180^{\circ}$
$\Rightarrow \quad 6 x=180^{\circ}$
$\Rightarrow \quad x=\frac{180^{\circ}}{6}=30^{\circ}$
\therefore Largest angle $=3 \times 30^{\circ}=90^{\circ}$
\therefore (c) is correct.
17. Let the 3rd term of be x.
$\therefore \quad 12: 21:: x: 14$
$\therefore \quad 12 \times 14=21 \times x$
$\therefore \quad x=\frac{12 \times 14}{21}=8$
\therefore (d) is correct.
18. 10 boys can dig the pitch in $=12$ hours

1 boy can dig the pitch in $=(12 \times 10)$ hours
So, 8 boy can dig the pitch in $=\frac{12 \times 10}{8}$ hours $=15$ hours
\therefore (b) is correct.
19. Let the length of rectangle be $5 x$ and breadth be $4 x$.

Given, width of rectangle $=36 \mathrm{~m}$

$$
\begin{array}{ll}
\Rightarrow & 4 x=36 \mathrm{~m} \\
\Rightarrow & x=\frac{36}{4} \mathrm{~m}=9 \mathrm{~m}
\end{array}
$$

\therefore Length of field $=(5 \times 9) \mathrm{m}=45 \mathrm{~m}$
\therefore (b) is correct.
20. Speed of bus $=\frac{195}{3} \mathrm{~km} /$ hour $=65 \mathrm{~km} /$ hour Speed of train $=\frac{300}{4} \mathrm{~km} /$ hour $=75 \mathrm{~km} /$ hour

Ratio of both speeds $=\frac{65 \mathrm{~km} / \mathrm{h}}{75 \mathrm{~km} / \mathrm{h}}=\frac{65}{75}=\frac{13}{15}$
\therefore (a) is correct.

HOTS

- Out of 180 people like apples $=24$

Out of 1 people like apples $=\frac{24}{180}$
Out of 270 people like apples $=\frac{24}{180} \times 270=36$
Out of 12 apple lovers like oranges $=5$
Out of 1 apple lovers like oranges $=\frac{5}{12}$
Out of 36 apple lovers like oranges $=\frac{5}{12} \times 36=15$
Hence, 15 people like oranges.

VALUE BASED

- The cost of 5 kg of mangoes $=` 300$

The cost of 1 kg of mangoes $=\frac{` 300}{5}$
The cost of 12 kg of mangoes $=\frac{` 300}{5} \times 12={ }^{`} 720$
Hence, the cost of 12 kg of mangoes ` 720 .

Chapter 11 Line Segment, Ray and Line

EXERCISE 11A

1. (a) Line segments $=\overline{O L}, \overline{O P}$
(b) Line segments $=\overline{A B}$

Rays $=\overrightarrow{L M}, \overrightarrow{P Q}$

(c) Line segments $=\overline{G E}, \overline{G P}, \overline{E P}$

Rays $=\overrightarrow{E F}, \overrightarrow{G H}, \overrightarrow{P Q}$

2. (a) $\overline{P Q}, \overline{P R}, \overline{P S}, \overline{Q R}, \overline{Q S}, \overline{R S}$

(b) $\overline{X Y}, \overline{Y Z}$

(c) $\overline{A D}, \overline{A B}, \overline{A C}, \overline{A E}, \overline{D B}, \overline{B C}, \overline{C E}$

3. (a) $\overline{P R}, \overline{P Q}, \overline{R S}, \overline{Q S}$
(b) $\overrightarrow{P A}, \overrightarrow{Q C}, \overrightarrow{R B}, \overrightarrow{S D}$
(c) $\overline{P R}$ and $\overline{Q S}$

4. Three or more points in a plane are said to be collinear if they all lie on
 the same line.
(a) One only
(b) Three line segments : $\overline{A B}, \overline{B C}, \overline{A C}$
5. (a) A, Q, S, B
(b) A, C, B
(c) $\overleftrightarrow{A B}, \overleftrightarrow{P S}, \overleftrightarrow{R S}$
(d) $\overleftrightarrow{C D}, \overleftrightarrow{P Q}, \overleftrightarrow{P S}$
(e) $(\overleftrightarrow{A B}, \overleftrightarrow{P S}),(\overleftrightarrow{A B}, \overleftrightarrow{R S}),(\overleftrightarrow{C D}, \overleftrightarrow{R S})$,
 $(\overleftrightarrow{C D}, \overleftrightarrow{P S})$
6. (a) Six line segments : $\overline{A B}, \overline{A C}, \overline{A D}, \overline{B D}, \overline{B C}, \overline{D C}$

(b) Ten line segments : $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}, \overline{O A}, \overline{O C}, \overline{O D}, \overline{O B}, \overline{A C}, \overline{B D}$

(c) Twelve line segments : $\overline{A B}, \overline{B C}, \overline{A D}, \overline{D C}, \overline{F B}, \overline{F G}, \overline{G C}, \overline{E F}, \overline{E H}$ $\overline{H G}, \overline{E A}, \overline{H D}$

(d) Six line segments :
$\overline{A B}, \overline{F A}, \overline{F B}, \overline{D E}, \overline{D C}, \overline{E C}$

7. Lines, $\overleftrightarrow{A B}, \overleftrightarrow{B C}, \overleftrightarrow{A C}$, so there can be drawn three lines with noncollinear points A, B, C.

8. (a) True
(b) True
(c) True
(d) True
(e) False
9. (a) F
(b) T
(c) T
(d) F
(e) F
(f) F
(g) F
(h) T
(i) F
(j) F
(k) T
(l) $\mathrm{T} \quad$ (m) T
10. (a) cannot
(b) definite
(c) definite
(d) one
(e) no

EXERCISE 11B

1. (a)
2. (c)
3. (b)
4. (d)
5. (b)
6. (b)
7. (a)
8. (a)
9. (c)
10. (c)

HOTS

- No, two lines cannot intersect at more than one point?

EXERCISE 12

1. $(A B\|E F\| D C \| H G),(D A\|H E\| C B \| G F),(D H\|C G\| A E \| B F)$

2. $(A B, D C),(A D, B C)$

3. (a) Distance between parallel lines l and m is 1.2 cm .
(b) Distance between parallel lines l and m is 1 cm .

4. (a) $(M N \| P O),(P M \| O N)$

(b) $(P Q \| S R),(P S \| Q R)$

(c) $(P Q \| Y Z)$
(d) $(L Q\|M P\| N O),(L M \| Q P)$ and $(M N \| P O)$

(e) $(A B \| E D),(F A \| D C),(E F \| C B)$

5. (a) Perpendicular distance between the parallel lines l and m is same everywhere. So, l and m are parallel lines.

(a)
(b) Perpendicular distance between the parallel lines l and m is not same everywhere.
So, l and m are not parallel lines.

(b)
6. In fig., $\quad l \| m$ and

$$
A B \perp l \text { and } C D \perp l
$$

$\because l \| m$, so perpendicular distances between them should be same everywhere.

$$
\begin{aligned}
& \therefore \quad A B=C D \\
& \because \quad A B=2.3 \mathrm{~cm} \\
& \therefore \quad C D=2.3 \mathrm{~cm}
\end{aligned}
$$

7. No, the segments $P Q$ and $R S$ do not intersect.

And $P Q$ and $R S$ are not parallel because corresponding lines will interest when produced in one direction.
8. (a) False
(b) False
(c) True
(d) True

HOTS

- Intersecting lines $\rightarrow A, E, F, H, K, L, M, N, T, V, W, X, Y, Z$. Parallel lines $\rightarrow E, F, H$

Chapter 13
 Angles and Their Measurement

EXERCISE 13A

1. (i) Scissors, (b) a pair of compass, (iii) tongs and (iv) hands of clock
2. Vertex $=B$

Arms $=\overrightarrow{B A}$ and $\overrightarrow{B C}$

3. (a) 8 angles: $\angle A B D, \angle B A D, \angle A D B, \angle D B C, \angle B D C, \angle D C B$, $\angle A B C, \angle A D C$
(b) 3 angles : $\angle B A C, \angle A C B, \angle A B C$
(c) 4 angles : $\angle B A D, \angle A B C, \angle B C D, \angle C D A$

(a)

(b)

(c)
4. (a) Interior of points of $\angle A B C=Q, S$
(b) Exterior of points of $\angle A B C=P, R$
(c) Points lie on $\angle A B C=A, B, C, T, N$

5. (a) $\angle E R B$
(b) $\angle R S C$
(c) $\angle F S D$
6. (a) False
(b) True
(c) False
(d) True
(e) False

EXERCISE 13B

1. (a) Complete angle
(b) Acute angle
(c) Reflex angle
(d) Straight angle
(e) Right angle
(f) Obtuse angle
2. (a) Acute
(b) Zero
(c) Acute
(d) Acute
(e) Obtuse
(f) Obtuse
(g) Complete
(h) Reflex
(i) Right
(j) Obtuse
(k) Obtuse
(l) Acute
3. (a) One right angle $=1 \times 90^{\circ}=90^{\circ}$
(b) Two right angle $=2 \times 90^{\circ}=180^{\circ}$
(c) Three right angle $=3 \times 90^{\circ}=270^{\circ}$
(d) Four right angle $=4 \times 90^{\circ}=360^{\circ}$
(e) $\frac{2}{3}$ right angle $=\frac{2}{3} \times 90^{\circ}=60^{\circ}$
(f) $1 \frac{1}{2}\left(=\frac{3}{2}\right)$ right angle $=\frac{3}{2} \times 90^{\circ}=135^{\circ}$
4. (a) 90°
(b) 180°
(c) 90°
(d) 0°
5.

Acute angle

Obtuse Angle

Straight Angle

EXERCISE 13 C

1. (a) $\angle P Q R=75^{\circ}$
(b) $\angle F E D=135^{\circ}$
(c) $\angle B O A=45^{\circ}$
(d) $\angle G H I=75^{\circ}$
(e) $\angle L M N=55^{\circ}$
(f) $\angle T S R=135^{\circ}$
2. (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

3. Draw $A B=6 \mathrm{~cm}$. Take a point C on it such that $A C=4 \mathrm{~cm}$. Now, place the protractor on $A B$ in such away that its centre is exactly on the point C and its base line lies along $A B$.
Holding the protractor fixed, mark with a pencil a point N on the paper against 90° mark of the protractor.
Remove the protractor and with scale (ruler), draw a line passing through C on D.

Then, $C D \perp A B$ at C.
4. Place the protractor on $B C$ in such away that its centre is exactly on the point B and its base line lies along $\overrightarrow{B C}$. Holding the protractor fixed and read the angle unit.

Hence,
$\angle A B C=45^{\circ}$
Now, draw a ray $\overrightarrow{E F}$ equal to $\overrightarrow{B C}$ and place the protractor on $E F$ in such away that its centre
 is exactly on the point E and its base line lies along $\overrightarrow{E F}$. Holding the protractor fixed, mark with a pencil a point D on the paper agains 45° mark of the protractor.
Remove the protractor and with scale, draw a line passing through E and D.

Hence, $\angle D E F$ is the required angle equal to $\angle A B C$.

EXERCISE 13D

1. (b)
2. (c)
3. (d)
4. (b)
5. (c)
6. (d) 7. (c)
7. $\frac{3}{2}$ right angles $=\frac{3}{2} \times 90^{\circ}=135^{\circ}$
\therefore (b) is correct.
8. 2 right angles $=2 \times 90^{\circ}=180^{\circ}$
\therefore (b) is correct.
9. (b)

HOTS

- (i) Half of a revolution \rightarrow Straight angle
(ii) The complete revolution \rightarrow Complete angle
(iii) Between $\frac{1}{4}$ and $\frac{1}{2}$ of a revolution \rightarrow Obtuse angle
(iv) Three-fourths of a revolution \rightarrow Reflex angle

三 Chapter 14 Constructions (Using Ruler and a Pair of Compasses)

EXERCISE 14A

1. Steps of construction :
(a) Draw a line segment $A B=5.6 \mathrm{~cm}$.
(b) With A as centre and radius more than half $A B$, draw arcs, one on each side of $A B$.
(c) With A as centre and the same radius as before, draw arcs, cutting the previously drawn arcs P and Q respectively.

(d) Join $P Q$ meeting $A B$ at S.

Then, $P Q$ is the perpendicular bisector of $A B$.

2. Steps of construction :

(a) Draw a line segment $P Q=6.2 \mathrm{~cm}$.
(b) With P as centre and radius more than half $P Q$, draw arcs, one on each side of $P Q$.
(c) With Q as centre and the same radius as before, draw arcs, cutting the previously drawn arcs A and B respectively.

(d) Join $A B$ meeting $P Q$ at S.

Then, $A B$ is the perpendicular bisector of $P Q$.

3. Steps of construction :

(a) With the help of protractor, draw an angle of 50° (say $\angle A B C$).
(b) With B as centre and any convenient radius, draw an are cutting $B C$ and $B A$ at N and M respectively.
(c) With centre N and radius more than half $M N$, draw an arc.
(d) With centre M and the same radius as before, draw another arc cutting the previously drawn arc at a point O.
(e) Join $B O$ and produce it to any point D. Then, ray $B D$ bisects $\angle A B C$.

4. Steps of construction :

(a) Draw a ray $O M$.
(b) With O as centre and any radius, draw an arc cutting $O A$ and $O B$ at M and N respectively.

(c) With Q as centre and same radius, draw an arc cutting $Q M$ at X.
(d) With X as centre and radius as $M N$, cut the arc through X at Y.
(e) Join $Q Y$ and produce it to any point N.

Then, $\angle M Q N$ is the required angle equal to $\angle A O B$.

5. Steps of construction :

(a) Draw $\angle A O B=85^{\circ}$ at O.
(b) With O as centre and any convenient radius, draw an arc cutting $O B$ and $O A$ at R and S respectively.
(c) With centre R and radius more than $\frac{1}{2} R S$, draw an arc.

(d) With centre S and the same radius as
before, draw another arc, cutting the previously drawn arc at a point N.
(e) Join $O N$ and produce it to any point X.

Then, ray $O X$ bisects $\angle A O B$.
6. Steps of construction :

Let $A B$ be the given line and P be a point outside it.
(a) With P as centre and a convenient radius, draw an arc intersecting $A B$ at M and N.
(b) With M as centre and a radius greater than $\frac{1}{2} M N$, draw an arc.

(c) With N as centre and the same radius, draw another arc cutting the previously drawn arc at S.
(d) Join $P S$ meeting $A B$ at O.

Then, $P O$ is the required perpendicular on $A B$.

7. Steps of construction :

Let $A B$ be the given line and P be a point on it.
(a) With centre P and any conveninent radius, draw a semicircle to intersect $A B$ at M and N.
(b) With centre M and any radius more than $M P$, draw an arc.
(c) With centre N and the same radius, draw another arc cutting the previously drawn arc at S.
(d) Join $P S$. Then, $S P \perp A B$.
8. Steps of construction :

Let $A B$ be the given line and P be a given point outside it.
(a) Take any point S on $A B$.
(b) Join $S P$.
(c) Draw $\angle M P S$ such that $\angle M P S=\angle P S B$ as shown in the figure.
(d) Extend MP on both sides.

Then, the line $M P$ passes through the
 point P and $M P \| A B$.
9. See the solution of question 1 .
10. Steps of construction :
(a) Draw a line segment $A B=6 \mathrm{~cm}$.
(b) With centre A and radius 2.5 cm , draw an arc cutting $A B$ at point C.
(c) Now, with centre C and any convenient radius, draw a semicircle cutting $A B$ at M and N.
(d) With centre M and radius more than
 $\frac{1}{2} M C$, draw an arc.
(e) With centre N and same radius, draw another arc cutting previously drawn arc at point S.
(f) Joint $C S$ and extend it to any point D.

Then, $C D \perp A B$.

EXERCISE 14B

1. See the examples 1 and 3 of 14B and do yourself.
2. See the example 4 of 14B and do yourself.
3. (a) Steps of construction :
(i) Draw a ray $O P$.
(ii) With O as centre and any suitable radius, draw an arc cutting $O P$ at a point Q.
(iii) With Q as centre and the same radius as before, draw another arc to cut the previous arc at R.
(iv) Join $O R$ and produce it to S. Now,
 $\angle P O S=60^{\circ}$.
(v) Draw the bisector $O T$ of $\angle P O S$. Then, $\angle P O T=30^{\circ}$.
(vi) Now, draw the bisector $O U$ of $\angle P O T$. Then, $\angle P O U=15^{\circ}$.
(b) Steps of construction :
(i) See all the steps in example 4 on page 150to construct $\angle P O U=45^{\circ}$.
(ii) Draw bisector $O Q$ of $\angle P O U$, Then, $\angle P O Q=22 \frac{1}{2}^{\circ}$
(c) See example 4 on page 150 .

(d) Steps of construction :
(i) Draw $\angle B O A=90^{\circ}$ and extend ray $O B$ to point C in opposite direction.
(ii) Now, draw bisector $O D$ of $\angle C O A\left(=90^{\circ}\right)$. Then, $\angle D O A=45^{\circ}$.

(iii) We have $\angle B O D=135^{\circ}$
(= $\left.\angle B O A+\angle D O A=90^{\circ}+45^{\circ}\right)$.
Draw bisector $O E$ of $\angle B O D$.
Then,

$$
\angle B O E=67 \frac{1}{2}^{\circ}
$$

(e) Steps of construction :
(i) Draw $\angle A O C=90^{\circ}$ and $\angle A O D=60^{\circ}$.
(ii) Draw bisector $O B$ of $\angle D O C$.

Then, $\angle A O C=90^{\circ}$ and
$\angle A O D=60^{\circ}$
$\therefore \quad \angle D O C=90^{\circ}-60^{\circ}$ $=30^{\circ}$
$\because \quad \angle D O B=\frac{1}{2} \angle D O C$ $=\frac{1}{2} \times 30^{\circ}=15^{\circ}$

$$
\begin{aligned}
\therefore \quad \angle A O B & =\angle A O D+\angle D O B \\
& =60^{\circ}+15^{\circ} \\
& =75^{\circ}
\end{aligned}
$$

(f) Steps of construction :
(i) Draw $\angle A O C=90^{\circ}$ and $\angle A O D=120^{\circ}$.
(ii) Draw bisector $O B$ of $\angle C O D$,
Then, $\angle A O C=90^{\circ}$ and $\angle A O D=120^{\circ}$
$\therefore \quad \angle D O C=120^{\circ}-90^{\circ}$ $=30^{\circ}$
$\because \quad \angle C O B=\frac{1}{2} \angle C O D=\frac{1}{2} \times 30^{\circ}=15^{\circ}$
$\therefore \quad \angle A O B=\angle A O C+\angle C O B$

$$
=90^{\circ}+15^{\circ}=105^{\circ}
$$

(g) See solution of part (e) of question 3.
(h) Steps of construction :
(i) Draw a ray $O A$ and extent it to point D in opposite direction.
(ii) With centre O and convenient radius draw semicircle cutting the rays at M and N.
(iii) With centre M and same radius, draw an arc to cut the semicircle at R.

(iv) Join $O R$ at produce it to C.
(v) Now, draw bisector $O B$ of $\angle C O D$.

Then, $\quad \angle A O B=\angle A O C+\angle C O B$
$=120^{\circ}+30^{\circ}$
$=150^{\circ}$
4. See example 2 on page 149 .
5. Steps of construction :
(a) Draw $\quad \angle P O T=120^{\circ}$ instructed in example 2.
(b) Draw bisector $O V$ of $\angle P O U$.
(c) Again, draw bisector $O W$ of $\angle U O T$.
Therefore,

$$
\begin{aligned}
\angle P O T & =120^{\circ} \\
& =\angle P O V+\angle V O U+\angle U P W+\angle W O T
\end{aligned}
$$

6. Do yourself.

HOTS

- Yes, the perpendicular bisector of a line segment is a line of symmetry as it divides it into two equal parts and is perpendicular to it.

Chapter 15

Polygons

EXERCISE 15

1. (a) simple closed figure
(b) non-simple closed figure
(c) open figure
(d) simple closed figure
(e) complex closed figure
(f) open figure
(g) non-simple closed figure
(h) complex closed figure
2.

(c)

(f)

3. (a)

(b)

4. (a) Hexagon
(b) Triangle
(c) Octagon
(d) Quadrilateral
5. (a) closed figure (b) 4, 4
(c) 3,3
(d) quadrilateral
(e) triangle
(f) two

HOTS

- Diagonals $\rightarrow A C, A D, B D, B E, C A, C E, D B, D A, E B, E C$

Chapter 16 Triangles

EXERCISE 16A

1. We get 'triangle'.
(a) the side opposite to $\angle N=L M$
(b) the angle opposite to the side $M N=\angle L$
(c) the vertex opposite to the side $N L=M$
(d) the side opposite to the vertex $M=L N$

2. Let the measure of other two equal angles be x.
$\angle 1=110^{\circ}, \angle 2=\angle 3=x$
We know that the sum of the angles of a triangle is 180°.

$$
\therefore \quad \begin{aligned}
\angle 1+\angle 2+\angle 3 & =180^{\circ} \\
110^{\circ}+x+x & =180^{\circ} \\
2 x & =180^{\circ}-110^{\circ} \\
2 x & =70^{\circ} \\
x & =\frac{70^{\circ}}{2} \\
x & =35^{\circ}
\end{aligned}
$$

Hence, the measure of each of equal angles is 35°.
3. We have, $\angle 1=90^{\circ}, \angle 2=50^{\circ}$

Let the other acute angle be x.
We know, the sum of all the angles of a triangle is 180°.

$$
\therefore \quad \begin{aligned}
\angle 1+\angle 2+\angle 3 & \angle 180^{\circ} \\
& 90^{\circ}+50^{\circ}+x=180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
140^{\circ}+x & =180^{\circ} \\
x & =180^{\circ}-140^{\circ} \\
x & =40^{\circ}
\end{aligned}
$$

Hence, the other acute angle of triangle is 40°.
4. Let the third angle be x.

We have, $\angle 1=72^{\circ}, \angle 2=58^{\circ}$
We know, the sum of all the angles of a triangle is 180°.

$$
\therefore \quad \begin{aligned}
\angle 1+\angle 2+\angle 3 & =180^{\circ} \\
72^{\circ}+58^{\circ}+x & =180^{\circ} \\
130^{\circ}+x & =180^{\circ} \\
x & =180^{\circ}-130^{\circ} \\
x & =50^{\circ}
\end{aligned}
$$

Hence, the third angle of triangle is 50°.
5. Let the angles be $x, 3 x$ and $5 x$.

We know, the sum of all the angles of a triangle is 180°.

$$
\therefore \quad \begin{aligned}
\angle 1+\angle 2+\angle 3 & =180^{\circ} \\
x+3 x+5 x & =180^{\circ} \\
9 x & =180^{\circ} \\
x & =\frac{180^{\circ}}{9} \\
x & =20^{\circ}
\end{aligned}
$$

Hence, $\angle 1=20^{\circ}, \angle 2=3 \times 20^{\circ}=60^{\circ}, \angle 3=5 \times 20^{\circ}=100^{\circ}$
6. Given, in $\triangle A B C$,

$$
\begin{array}{ll}
& 3 \angle A=4 \angle B=6 \angle C \\
\because & 3 \angle A=6 \angle C \\
\therefore & \angle A=\frac{6}{3} \angle C=2 \angle C \\
\because & 4 \angle B=6 \angle C \\
\therefore & \angle B=\frac{6}{4} \angle C=\frac{3}{2} \angle C
\end{array}
$$

We know, that the sum of the angles of a triangle is 180°.
$\therefore \quad \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \quad 2 \angle C+\frac{3}{2} \angle C+\angle C=180^{\circ}$
$\Rightarrow \quad \frac{4 \angle C+3 \angle C+2 \angle C}{2}=180^{\circ}$
$\Rightarrow \quad 9 \angle C=180^{\circ} \times 2$

$$
\begin{array}{ll}
\Rightarrow & \angle C=\frac{180^{\circ} \times 2}{9} \\
\Rightarrow & \angle C=40^{\circ}
\end{array}
$$

Hence, $\quad \angle A=2 \times 40^{\circ}=80^{\circ}$

$$
\begin{aligned}
& \angle B=\frac{3}{2} \times 40^{\circ}=60^{\circ} \\
& \angle C=40^{\circ}
\end{aligned}
$$

7. Consider the triangle be $\triangle A B C$.

In $\triangle A B C$,

$$
\angle A=\angle B+\angle C \quad \text { (given) }
$$

We know that the sum of the angles of a triangle is 180°.

$$
\begin{array}{lr}
\therefore & \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow & \angle A+\angle A=180^{\circ} \\
\Rightarrow & 2 \angle A=180^{\circ} \\
\Rightarrow & \angle A=\frac{180^{\circ}}{2} \\
\Rightarrow & \angle A=90^{\circ}
\end{array}
$$

Hence, one of the angles of trianle $A B C$ is 90°. So, it is a right triangle.
8. (a) Isosceles
(b) Isosceles
(c) Scalene
(d) Equilateral
(e) Equilateral
(f) Isosceles
(g) Scalene
9. (a) Obtuse
(b) Acute
(c) Right
(d) Obtuse
10. (a) perimeter
(b) equal
(c) 60°
(d) different
(e) 180°
(f) $3,3,3$

EXERCISE 16B

1. Let the angles of triangle be $2 x, 3 x$ and $4 x$.

$$
\begin{array}{lrl}
\therefore & \angle 1+\angle 2+\angle 3 & =180^{\circ} \\
\Rightarrow & 2 x+3 x+4 x & =180^{\circ} \\
\Rightarrow & 9 x & =180^{\circ} \\
\Rightarrow & x & =\frac{180^{\circ}}{9}=20^{\circ}
\end{array}
$$

$\therefore \quad$ Largest angle $=4 \times 20^{\circ}=80^{\circ}$
\therefore (b) is correct.
2. (c)
3. (b)
4. (c)
5. Let the third angle be x.

$$
\therefore \quad \begin{aligned}
\angle 1+\angle 2+\angle 3 & =180^{\circ} \\
30^{\circ}+25^{\circ}+x & =180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
55^{\circ}+x & =180^{\circ} \\
x & =180^{\circ}-55^{\circ} \\
x & =125^{\circ}
\end{aligned}
$$

\therefore (d) is correct.
6. Let the sides of triangle be $3 x, 2 x$ and $5 x$.

Perimeter of triangle $=30 \mathrm{~cm}$

$$
\begin{aligned}
3 x+2 x+5 x & =30 \mathrm{~cm} \\
10 x & =30 \mathrm{~cm} \\
x & =\frac{30}{10} \mathrm{~cm} \\
x & =3 \mathrm{~cm}
\end{aligned}
$$

\therefore Length of longst side $=5 \times 3=15 \mathrm{~cm}$
\therefore (b) is correct.
7. (c)
8. Let the equal angles measure x.

$$
\begin{array}{cc}
\therefore & \angle 1+\angle 2+\angle 3=180^{\circ} \\
\Rightarrow & x+70^{\circ}+70^{\circ}=180^{\circ} \\
\Rightarrow & x=180^{\circ}-140^{\circ} \\
\Rightarrow & x=40^{\circ}
\end{array}
$$

\therefore (c) is correct.
9. (d) 10. (c)

HOTS

- In equilateral triangle all sides are equal but in isosceles one, two sides are equal.

Chapter 17 Quadrilaterals

EXERCISE 17A

1. (a) two pairs of adjacent angles

$$
=(\angle A, \angle B),(\angle B, \angle C)
$$

(b) two pairs of adjacent sides

$$
=(A B, B C),(A D, D C)
$$

(c) two pairs of opposite angles

$$
=(\angle A, \angle C),(\angle B, \angle D)
$$

(d) two pairs of opposite sides $=(A B, D C),(A D, B C)$
(e) its diagonals $=A C, B D$
2. Let the sides of the parallelogram be $4 x$ and $3 x$.

Perimeter of parallelogram $=2(l+b)$

$$
\because \quad \begin{aligned}
2(l+b) & =56 \mathrm{~cm} \\
2(4 x+3 x) & =56 \mathrm{~cm} \\
2 \times 7 x & =56 \mathrm{~cm} \\
14 x & =56 \mathrm{~cm} \\
x & =\frac{56}{14} \mathrm{~cm} \\
x & =4 \mathrm{~cm}
\end{aligned}
$$

Hence, length of parallelogram $=4 \times 4 \mathrm{~cm}=16 \mathrm{~cm}$
breadth of parallelogram $=3 \times 4 \mathrm{~cm}=12 \mathrm{~cm}$
3. Steps of construction :
(a) Draw $A B=6.5 \mathrm{~cm}$
(b) Draw $\angle B A X=70^{\circ}$ at point A.
(c) With centre A and radius of 4.8 cm , draw an arc cutting $A X$ at point D.
(d) Now, from point D, draw line $D Y$ parallel to $A B$.

(e) With centre D and radius $6.5 \mathrm{~cm}(=A B)$, draw an arc cutting $D Y$ at point C.
(f) Join $B C$.

Hence, $A B C D$ is required parallelogram.
And diagonal $A C=9.5 \mathrm{~cm}$
diagonal $B D=6.8 \mathrm{~cm}$
4. (a) The diagonals are unequal and the adjacent sides are equal = Rhombus
(b) The diagonals are equal and the adjacent sides are equal = Square
(c) The diagonals are equal and the adjacent sides are unequal $=$ Rectangle
5. (a) The opposite sides of a square are parallel, so it is a parallelogram.
(b) A parallelogram with each angle a right angle becomes a rectangle.
(c) A rhombus with each angle a right angle becomes a square.
(d) A rectangle with sides equal becomes a square.
6. A quadrilateral in which one and only one pair of parallel sides is called a trapezium.

In the adjacent figure, $A B C D$ is a trapezium in which $A B \| D C$.

A trapezium is said to be an isosceles trapezium if its nonparallel sides are equal. In the adjoining figure, $P Q R S$ is an isosceles trapezium in which $P Q \| S R$ and $P S=Q R$.

7. (a) False
(b) False
(c) False
8. According to given conditions,
(i) Sides are equal in length.
(ii) Angles are equal in measure.

Hence, this regular quadrilateral is a square.

EXERCISE 17B

1. (d) 2. (d)
2. (b)
3. (c)
4. (b)
5. (b) 7. (c)
6. (c)
7. Let the fourth angle of quadrilateral be x.

$$
\begin{array}{rlrl}
\because & \angle 1+\angle 2+\angle 3+\angle 4 & =360^{\circ} \\
\therefore & 80^{\circ}+70^{\circ}+120^{\circ}+x & =360^{\circ} \\
270^{\circ}+x & =360^{\circ} \\
x & =360^{\circ}-270^{\circ} \\
x & =90^{\circ}
\end{array}
$$

$\therefore \quad(\mathrm{c})$ is correct.
10. Let the angles be $3 x, 4 x, 5 x$ and $6 x$.
$\because \quad \angle 1+\angle 2+\angle 3+\angle 4=360^{\circ}$
$\therefore \quad 3 x+4 x+5 x+6 x=360^{\circ}$
$\Rightarrow \quad 18 x=360^{\circ}$
$\Rightarrow \quad x=\frac{360^{\circ}}{18}$
$\Rightarrow \quad x=20^{\circ}$
$\therefore \quad$ Largest angle $=6 \times 20^{\circ}=120^{\circ}$
$\therefore \quad(b)$ is correct.

HOTS

- \because Two adjacent angles of a parallelogram are equal.
\therefore All angles are equal.
$\therefore \quad \frac{360^{\circ}}{4}=90^{\circ}$
$\angle A=\angle B, \angle B=\angle C, \angle C=\angle D$,
 $\angle D=\angle A$
$\therefore \quad \angle A=\angle B=\angle C=\angle D=90^{\circ}$
Hence, measure of each angle is 90°.
Another name of parallelogram is rectangle.

EXERCISE 18

2.

3.

4.

5. (a) $>$ (b) $>$ (c) \langle (d) $>$
6. (a) arc (b) chord (c) at the centre, on the circle (d) passes through (e) sector
7. (a) True
(b) False
(c) False
(d) True
(e) False

HOTS

- \because Diameter of a circle is divide it equally into two parts.
\therefore By dividing the field by drawing its diameter.

Chapter 19

Three-Dimensional Shapes

EXERCISE 19

1. (i) (c)
(ii) (b)
(iii) (d)
(iv) (c)
(v) (d) (vi) (b)
2. (a) cube
(b) sphere
(c) opposite
(d) $6,12,8$
(e) solid
(f) 3, 6
(g) 4,8
(h) $6,3,2,9$
3. (a) A brick, a book, a chalk box, a matchbox
(b) Circular pillar, circular pipe, measuring jar, test tube
(c) Ice-cream cone, clown's cap, conical tent, conical vessel

HOTS

- Triangular Prism $\rightarrow 3$ rectangles of same size and 2 two triangles of same size.
- Cube $\rightarrow 6$ identical squares.

- Chapter 20 Two-Dimensional Reflection Symmetry 三

EXERCISE 20

1. (i) (c) (ii) (d) (iii) (a) (iv) (b) (v) (d) (vi) (a) (vii) (a) (viii) (c)
2. (a)

(b)

(c)

(d)

3. (a) True
(b) True
(c) True
(d) False
(e) True
(f) True
(g) True

HOTS

- ' Y ' is the mirror line.

EXERCISE 21A

1. (a) Perimeter of rectangle $=2(l+b)$

$$
\begin{aligned}
& =2(6.5 \mathrm{~m}+4.8 \mathrm{~m}) \\
& =2 \times 11.3 \mathrm{~m} \\
& =22.6 \mathrm{~m} \text { or } 22 \mathrm{~m} 6 \mathrm{dm}
\end{aligned}
$$

(b) Perimeter of rectangle $=2(l+b)$

$$
\begin{aligned}
& =2(3.25 \mathrm{~m}+2.50 \mathrm{~m}) \\
& =2 \times 5.75 \mathrm{~m} \\
& =11.50 \mathrm{~m} \text { or } 11 \mathrm{~m} 50 \mathrm{~cm}
\end{aligned}
$$

(c) Perimeter of rectangle $=2(l+b)$

$$
\begin{aligned}
& =2(14.2 \mathrm{~cm}+6.8 \mathrm{~cm}) \\
& =2 \times 21 \mathrm{~cm}=42 \mathrm{~cm}
\end{aligned}
$$

2. (a) Perimeter of square $=4 \times$ side

$$
=4 \times 6.4 \mathrm{~cm}=25.6 \mathrm{~cm}
$$

(b) Perimeter of square $=4 \times$ side

$$
=4 \times 5.5 \mathrm{~m}=22 \mathrm{~m}
$$

(c) Perimeter of square $=4 \times$ side

$$
=4 \times 3.5 \mathrm{~m}=14 \mathrm{~m}
$$

3. Let the side of square be $x \mathrm{~m}$.
\because Perimeter of square $=36 \mathrm{~m}$
$\therefore \quad 4 \times$ side $=36 \mathrm{~m}$
$\Rightarrow \quad 4 \times x=36 \mathrm{~m}$
$\Rightarrow \quad x=\frac{36}{4} \mathrm{~m}$
$\Rightarrow \quad x=9 \mathrm{~m}$
Hence, the side of square is 9 m .
4. Length of rectangle $=54 \mathrm{~m}$

Breadth of rectangle $=21 \mathrm{~m}$
$\because \quad$ Perimeter of rectangle $=2(l+b)=2(54+21) \mathrm{m}$

$$
=2 \times 75 \mathrm{~m}=150 \mathrm{~m}
$$

\therefore Cost of fencing the rectangular field $={ }^{\prime}(15 \times 150)$

$$
={ }^{`} 2250
$$

5. Let the length of rectangle be $5 x$ and breadth be $3 x$.
\because Perimeter of rectangle $=128 \mathrm{~m}$

$$
\begin{aligned}
\therefore & 2(l+b) & =128 \mathrm{~m} \\
\Rightarrow & 2(5 x+3 x) & =128 \mathrm{~m} \\
\Rightarrow & 2 \times 8 x & =128 \mathrm{~m} \\
\Rightarrow & x & =\frac{128}{16} \mathrm{~m} \\
\Rightarrow & x & =8 \mathrm{~m}
\end{aligned}
$$

Hence, length $=5 \times 8 \mathrm{~m}=40 \mathrm{~m}$

$$
\text { Breadth }=3 \times 8 \mathrm{~m}=24 \mathrm{~m}
$$

6. Perimeter of rectangular field $=\frac{\text { Total cost }}{\text { Cost per } / \mathrm{m}}=\frac{1540}{14} \mathrm{~m}=110 \mathrm{~m}$

Given,

$$
b=23 \mathrm{~m}
$$

\because Perimeter of rectangular field $=110 \mathrm{~m}$

$$
\begin{array}{rlrl}
\therefore & 2(l+b) & =110 \mathrm{~m} \\
\Rightarrow & 2(l+23 \mathrm{~m}) & =110 \mathrm{~m} \\
\Rightarrow & l+23 \mathrm{~m} & =\frac{110}{2} \mathrm{~m} \\
& & l+23 \mathrm{~m} & =55 \mathrm{~m} \\
\Rightarrow & l & =55 \mathrm{~m}-23 \mathrm{~m} \\
\Rightarrow & l & l & =32 \mathrm{~m}
\end{array}
$$

Hence, the length of rectangular field is 32 m .
7. Perimeter of rectangular field $=\frac{\text { Total cost }}{\text { Cost per } / \mathrm{m}}$

$$
=\frac{3300}{25} \mathrm{~m}=132 \mathrm{~m}
$$

According to given condition,
Let the length of rectangle be $7 x$ and breadth be $4 x$.
\because Perimeter of rectangular field $=132 \mathrm{~m}$

$$
\left.\begin{array}{lr}
\therefore & 2(l+b)=132 \mathrm{~m} \\
\Rightarrow & 2(7 x+4 x)=132 \mathrm{~m} \\
\Rightarrow & 11 x=\frac{132}{2} \mathrm{~m} \\
\Rightarrow & 11 x=66 \mathrm{~m} \\
\Rightarrow & x
\end{array}\right) \frac{66}{11} \mathrm{~m} .
$$

Hence, length $=7 \times 6 \mathrm{~m}=42 \mathrm{~m}$

$$
\text { Breadth }=4 \times 6 \mathrm{~m}=24 \mathrm{~m}
$$

8. Side of square $=21 \mathrm{~m}$

Perimeter of square $=4 \times 21 \mathrm{~m}=84 \mathrm{~m}$
Now, let the length of rectangle be $4 x$ and breadth be $3 x$.

But,

$$
\begin{array}{rlrl}
& & \text { Perimeter of rectangle } & =2(l+b)=84 \mathrm{~m} \\
\Rightarrow & & 2(4 x+3 x) & =84 \mathrm{~m} \\
\Rightarrow & & 2 \times 7 x & =84 \mathrm{~m} \\
\Rightarrow & & 14 x & =84 \mathrm{~m} \\
\Rightarrow & x & =\frac{84}{14} \mathrm{~m} \\
& & x & =6 \mathrm{~m}
\end{array}
$$

Hence, length of rectangular field $=4 \times 6 \mathrm{~m}=24 \mathrm{~m}$

$$
\text { Breadth of rectangular field }=3 \times 6 \mathrm{~m}=18 \mathrm{~m}
$$

9. Perimeter of square $=\frac{\text { Total cost of fencing }}{\text { Cost per } m}$

$$
\begin{aligned}
4 \times \text { side } & =\frac{5760}{45} \mathrm{~m} \\
4 \times \text { side } & =128 \mathrm{~m} \\
\text { side } & =\frac{128}{4} \mathrm{~m} \\
\text { side } & =32 \mathrm{~m}
\end{aligned}
$$

Hence, the length of each side of field is 32 m .
10. (a) Perimeter of given triangle $=$ Sum of all sides

$$
=7.8 \mathrm{~cm}+6.5 \mathrm{~cm}+5.9 \mathrm{~cm}=20.2 \mathrm{~cm}
$$

(b) Perimeter equilateral triangle $=3 \times$ side

$$
=3 \times 8.3 \mathrm{~cm}=24.9 \mathrm{~cm}
$$

(c) Perimeter of isoscales triangle $=$ Sum of all sides

$$
\begin{aligned}
& =8.5 \mathrm{~cm}+8.5 \mathrm{~cm}+7 \mathrm{~cm} \\
& =24 \mathrm{~cm}
\end{aligned}
$$

11. (a) Perimeter of regular pentagon $=5 \times$ side

$$
=5 \times 10 \mathrm{~cm}=50 \mathrm{~cm}
$$

(b) Perimeter of regular octagon $=8 \times$ side

$$
=8 \times 6.5 \mathrm{~cm}=52 \mathrm{~cm}
$$

(c) Perimeter of regular decagon $=10 \times$ side

$$
\begin{aligned}
& =10 \times 4.6 \mathrm{~cm} \\
& =46 \mathrm{~cm}
\end{aligned}
$$

12. (a) Perimeter of given figure $=4 \times 18 \mathrm{~cm}=72 \mathrm{~cm}$
(b) Perimeter of given figure

$$
\begin{aligned}
& =8 \mathrm{~cm}+16 \mathrm{~cm}+16 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+12 \mathrm{~cm}+12 \mathrm{~cm} \\
& =72 \mathrm{~cm}
\end{aligned}
$$

(c) Perimeter of given figure $=27 \mathrm{~cm}+35 \mathrm{~cm}+35 \mathrm{~cm}+45 \mathrm{~cm}$

$$
=142 \mathrm{~cm}
$$

EXERCISE 21B

1. (a) Diameter of given circle $=28 \mathrm{~cm}$

So, \quad its radius $=\frac{28}{2} \mathrm{~cm}=14 \mathrm{~cm}$
Circumference of circle $=2 \pi r$

$$
=2 \times \frac{22}{7} \times 14 \mathrm{~cm}=88 \mathrm{~cm}
$$

(b) Diameter of given circle $=49 \mathrm{~cm}$

So, \quad its radius $=\frac{49}{2} \mathrm{~cm}$
Circumference of circle $=2 \pi r$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{49}{2} \mathrm{~cm} \\
& =154 \mathrm{~cm}
\end{aligned}
$$

(c) Diameter of given circle $=7.7 \mathrm{~cm}$

So, its radius $=\frac{7.7}{2} \mathrm{~m}$
Circumference of circle $=2 \pi r$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{7.7}{2} \mathrm{~m} \\
& =24.2 \mathrm{~m}
\end{aligned}
$$

2. (a) Radius of the given circle $=35 \mathrm{~cm}$
\therefore Circumference of circle $=2 \pi r$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 35 \mathrm{~cm} \\
& =220 \mathrm{~cm}
\end{aligned}
$$

(b) Radius of the given circle $=12.6 \mathrm{~cm}$
\therefore Circumference of circle $=2 \pi r$

$$
=2 \times \frac{22}{7} \times 12.6 \mathrm{~cm}=79.2 \mathrm{~cm}
$$

(c) Radius of the given circle $=4.2 \mathrm{~cm}$
\therefore Circumference of circle $=2 \pi r$

$$
=2 \times \frac{22}{7} \times 4.2 \mathrm{~cm}=26.4 \mathrm{~cm}
$$

3. Let the radius of wheel is r.
$\because \quad$ Circumference of wheel $=264 \mathrm{~cm}$
$\therefore \quad \pi d=264 \mathrm{~cm}$
$\Rightarrow \quad \frac{22}{7} \times d=264 \mathrm{~cm}$
$\Rightarrow \quad d=\frac{264 \times 7}{22} \mathrm{~cm}$
$\Rightarrow \quad d=84 \mathrm{~cm}$
Hence, the diameter of circle is 84 cm .
4. Let the radius of wheel be r.
\because Circumference of the wheel $=176 \mathrm{~cm}$

$$
\begin{aligned}
\therefore & 2 \pi r & =176 \mathrm{~cm} \\
\Rightarrow & 2 \times \frac{22}{7} \times r & =176 \mathrm{~cm} \\
\Rightarrow & r & =\frac{176 \times 7}{2 \times 22} \mathrm{~cm} \\
\Rightarrow & r & =28 \mathrm{~cm}
\end{aligned}
$$

Hence, the radius of the wheel is 28 cm .
5. Diameter of wheel of car $=70 \mathrm{~cm}$

So, Its radius $=\frac{70}{2} \mathrm{~cm}=35 \mathrm{~cm}$
Circumference of wheel $=2 \pi r$

$$
=2 \times \frac{22}{7} \times 35 \mathrm{~cm}=220 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Number of revolution } & =\frac{\text { Total distance }}{\text { Circumference }} \\
& =\frac{1.65 \mathrm{~km}}{220 \mathrm{~cm}}=\frac{1.65 \times 1000 \mathrm{~cm}}{220 \mathrm{~cm}} \\
& =750 \text { revolutions }
\end{aligned}
$$

6. Diameter of the wheel $=77 \mathrm{~cm}$

Circumference of wheel $=\pi d$

$$
=\frac{22}{7} \times 77 \mathrm{~cm}=242 \mathrm{~cm}
$$

\because Distance covered in 1 revolution $=242 \mathrm{~cm}$
\therefore Distance covered in 500 revolution $=242 \times 500 \mathrm{~cm}$
$=121000 \mathrm{~cm}$ or 1210 m

EXERCISE 21C

1. Figure contains 14 complete squares and 1 half part of square.

$$
\text { So, } \quad \begin{aligned}
\text { its area } & =\left[(14 \times 1)+\left(1 \times \frac{1}{2}\right)\right] \mathrm{sq} \mathrm{~cm} \\
& =\left(14+\frac{1}{2}\right) \mathrm{sq} \mathrm{~cm}=14.5 \mathrm{sq} \mathrm{~cm} .
\end{aligned}
$$

2. Figure contains 14 complete squares.

So, \quad its area $=(14 \times 1) \mathrm{sq} \mathrm{cm}=14 \mathrm{sq} \mathrm{cm}$
3. Figure contains 9 complete squares and 6 half parts of square.

So, \quad its area $=\left[(9 \times 1)+\left(6 \times \frac{1}{2}\right)\right] \mathrm{sq} \mathrm{cm}$

$$
\begin{aligned}
& =(9+3) \mathrm{sq} \mathrm{~cm} \\
& =12 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

4. Figure contains 6 complete squares and 4 half parts of square.

So, \quad its area $=\left[(6 \times 1)+\left(4 \times \frac{1}{2}\right)\right] \mathrm{sq} \mathrm{cm}$

$$
\begin{aligned}
& =(6+2) \mathrm{sq} \mathrm{~cm} \\
& =8 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

5. Figure contains 4 complete squares, 8 more than half parts of square and 4 less than half parts of square.

$$
\text { So, } \quad \begin{aligned}
\text { its area } & =[(4 \times 1)+(8 \times 1)] \mathrm{sq} \mathrm{~cm} \\
& =(4+8) \mathrm{sq} \mathrm{~cm} \\
& =12 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

6. Figure contains 12 complete squares, 4 more than half parts of square and 4 less than half parts of square.
So,

$$
\begin{aligned}
\text { its area } & =[(12 \times 1)+(4 \times 1)] \mathrm{sq} \mathrm{~cm} \\
& =(12+4) \mathrm{sq} \mathrm{~cm} \\
& =16 \mathrm{sq} \mathrm{~cm}
\end{aligned}
$$

EXERCISE 21D

1. (a) Area of given rectangle $=l \times b$

$$
\begin{aligned}
& =(2.5 \times 3) \mathrm{km}^{2} \\
& =7.5 \mathrm{~km}^{2}
\end{aligned}
$$

(b) Area of given rectangle $=l \times b$

$$
\begin{aligned}
& =(4.05 \times 50) \mathrm{cm}^{2} \\
& =20250 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) Area of given rectangle $=l \times b$

$$
\begin{aligned}
& =(14.5 \times 6.8) \mathrm{m}^{2} \\
& =98.6 \mathrm{~m}^{2}
\end{aligned}
$$

(d) Area of given rectangle $=(11 \times 8) \mathrm{m}^{2}$

$$
=88 \mathrm{~m}^{2}
$$

(e) Area of given rectangle $=l \times b$

$$
=(35 \times 15) \mathrm{cm}^{2}=525 \mathrm{~cm}^{2}
$$

2. Length $=3 \mathrm{~m} 25 \mathrm{~cm}=3.25 \mathrm{~m}$

Breadth $=2 \mathrm{~m} 20 \mathrm{~cm}=2.20 \mathrm{~m}$

$$
\begin{aligned}
\text { Area of top of table } & =l \times b \\
& =(3.25 \times 2.20) \mathrm{m}^{2}=7.15 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the area of top of table is $7.15 \mathrm{~m}^{2}$.
3. Side of square plot $=16 \mathrm{~m}$

Area of square plot $=$ side \times side

$$
\begin{aligned}
& =(16 \times 16) \mathrm{m}^{2} \\
& =256 \mathrm{~m}^{2}
\end{aligned}
$$

4. Length $=13 \mathrm{~m}$ and breadth $=9 \mathrm{~m}$.

Area of the floor of the room $=(13 \times 9) \mathrm{m}^{2}$

$$
=117 \mathrm{~m}^{2}
$$

Area of carpet required $=117 \mathrm{~m}^{2}$
Widgth of carpet $=75 \mathrm{~cm}=0.75 \mathrm{~m}$
Length of carpet $=\frac{\text { area of carpet }}{\text { width of carpet }}=\left(\frac{117}{0.75}\right) \mathrm{m}=156 \mathrm{~m}$
Rate of carpeting $=` 65$
Cost of carpeting $=`(65 \times 156)=` 10140$
Hence, the total cost of carpeting is ${ }^{`} 10140$.
5. Length of lane $=150 \mathrm{~m}$ and its breadth $=9 \mathrm{~m}$

$$
\begin{aligned}
\text { Area of lane } & =l \times b \\
& =(150 \times 9) \mathrm{m}^{2}=1350 \mathrm{~m}^{2} \\
& =1350 \times 10000 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, length of each brick $=22.5 \mathrm{~cm}$ and its breadth $=7.5 \mathrm{~cm}$
Area of each brick $=l \times b$

$$
\begin{aligned}
& =(22.5 \times 7.5) \mathrm{cm}^{2} \\
& =168.75 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Number of bricks $=\frac{\text { Area of lane }}{\text { Area of each brick }}$

$$
\begin{aligned}
& =\frac{1350 \times 10000}{168.75} \text { bricks } \\
& =80000 \text { bricks }
\end{aligned}
$$

6. Length of carpet $=20 \mathrm{~m} 75 \mathrm{~cm}=20.75$ and its breadth $=50 \mathrm{~cm}=0.50 \mathrm{~m}$

$$
\begin{aligned}
\text { Area of carpet } & =l \times b \\
& =(20.75 \times 0.50) \mathrm{m}^{2} \\
& =10.375 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad 1 \mathrm{~m}^{2} \text { costs }={ }^{`} 150 \\
& \therefore \quad 10.375 \mathrm{~m}^{2} \text { cost }=`(150 \times 10.375)={ }^{`} 1556.25
\end{aligned}
$$

Hence, the cost of carpet is ` 1556.25 .
7. Length of sheet of paper $=3 \mathrm{~m} 24 \mathrm{~cm}=324 \mathrm{~cm}$
and its breadth $=1 \mathrm{~m} 72 \mathrm{~cm}=172 \mathrm{~cm}$
Area of sheet of paper $=l \times b$

$$
\begin{aligned}
& =(324 \times 172) \mathrm{cm}^{2} \\
& =55728 \mathrm{~cm}^{2}
\end{aligned}
$$

Length of piece of paper $=18 \mathrm{~cm}$ and its breadth $=12 \mathrm{~cm}$
Area of piece of paper $=l \times b=(18 \times 12) \mathrm{cm}^{2}$

$$
=216 \mathrm{~cm}^{2}
$$

$\therefore \quad$ the number of envelope $=\frac{\text { Area of sheet of paper }}{\text { Area of piece of paper }}$

$$
\begin{aligned}
& =\frac{55728}{216} \text { envelopes } \\
& =258 \text { envelopes }
\end{aligned}
$$

Hence, 258 envelopes can be made.
8. Length of room $=12.5 \mathrm{~m}$ and its breadth $=8 \mathrm{~m}$

$$
\text { Area of room }=l \times b
$$

$$
=(12.5 \times 8) \mathrm{m}^{2}=100 \mathrm{~m}^{2}
$$

Side of carpet measures $=8 \mathrm{~m}$

$$
\text { Area of carpet }=\text { side } \times \text { side }
$$

$$
=8 \times 8 \mathrm{~m}^{2}=64 \mathrm{~m}^{2}
$$

\therefore Area of floor, which is not carpeted $=$ Area of room - Area of carpet

$$
\begin{aligned}
& =(100-64) \mathrm{m}^{2} \\
& =36 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, area of flood, which is not carpeted is $36 \mathrm{~m}^{2}$.
9. Let the width of rectangle be b.

Length of rectangle $=26 \mathrm{~cm}$
$\because \quad$ Area of rectangle $=390 \mathrm{~cm}^{2}$
$\therefore \quad l \times b=390 \mathrm{~cm}^{2}$

$$
26 \mathrm{~cm} \times b=390 \mathrm{~cm}^{2}
$$

$$
b=\frac{390}{26} \mathrm{~cm}
$$

$$
b=15 \mathrm{~cm}
$$

Now, perimeter of rectangle $=2(l+b)$

$$
\begin{aligned}
& =2(26+15) \mathrm{cm} \\
& =2 \times 41 \mathrm{~cm}=82 \mathrm{~cm}
\end{aligned}
$$

Hence, the width of rectangle is 15 cm and perimeter is 82 cm .
10. Let the length of rectangle be l.

Breadth $=25 \mathrm{~cm}$
$\because \quad$ Area of rectangle $=800 \mathrm{~cm}^{2}$
$\therefore \quad \begin{aligned} l \times b & =800 \mathrm{~cm}^{2} \\ l \times 25 \mathrm{~cm} & =800 \mathrm{~cm}^{2} \\ l & =\frac{800}{25} \mathrm{~cm}\end{aligned}$
$l=32 \mathrm{~cm}$
Now, perimeter of rectangle $=2(l+b)$

$$
\begin{aligned}
& =2(32+25) \mathrm{cm} \\
& =2 \times 57 \mathrm{~cm}=114 \mathrm{~cm}
\end{aligned}
$$

Hence, the perimeter of rectangle is 114 cm .
11. Length of wall $=4 \mathrm{~m}=400 \mathrm{~cm}$ and its breadth $=3 \mathrm{~m}=3 \times 100=300 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area of wall } & =l \times b=(400 \times 300) \mathrm{cm}^{2} \\
& =120000 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, length of each tile $=12 \mathrm{~cm}$, and its breadth $=10 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area of } 1 \text { tile } & =l \times b \\
& =(12 \times 10) \mathrm{cm}^{2} \\
& =120 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Number of tiles $=\frac{\text { Area of wall }}{\text { Area of } 1 \text { tile }}$

$$
=\frac{120000}{120} \text { tiles }=1000 \text { tiles }
$$

$\because \quad$ Cost of 1 tile $={ }^{`} 22.50$
$\therefore \quad$ Cost of 1000 tiles $=`(22.50 \times 1000)=` 22500$
Hence, the cost of all tiles is ` 22500.
12. Area of rectangular field $=\frac{\text { Total cost of cultivation }}{\text { Cost per square metre }}$

$$
\begin{aligned}
& =\frac{51000}{25} \mathrm{~m}^{2} \\
& =2040 \mathrm{~m}^{2}
\end{aligned}
$$

Width of the field $=40 \mathrm{~m}$
$\therefore \quad$ Length of the rectangular field $=\frac{\text { Area }}{\text { Width }}=\frac{2040}{40} \mathrm{~m}=51 \mathrm{~m}$
Now, perimeter of the field $=2(l+b)$

$$
=2(51+40) \mathrm{m}=182 \mathrm{~m}
$$

\because Cost of fencing the field $={ }^{`} 50$ per metre
\therefore Total cost of fencing the field $=`(50 \times 182)=` 9100$
13. Let the length of rectangular park be $5 x$ and breadth be $3 x$.

Perimeter of the field $=120 \mathrm{~m}$

$$
\begin{aligned}
2(l+b) & =120 \mathrm{~m} \\
2(5 x+3 x) & =120 \mathrm{~m} \\
2 \times 8 x & =120 \mathrm{~m} \\
16 x & =120 \mathrm{~m} \\
x & =\frac{120}{16} \mathrm{~m} \\
x & =7.5 \mathrm{~m}
\end{aligned}
$$

So, length of field $=5 \times 7.5 \mathrm{~m}=37.5 \mathrm{~m}$ and breadth $=3 \times 7.5 \mathrm{~m}=22.5$

Now, area of the park $=l \times b$

$$
\begin{aligned}
& =37.5 \times 22.5 \mathrm{~m}^{2} \\
& =843.75 \mathrm{~m}^{2}
\end{aligned}
$$

14. Let the breadth of rectangular plot be b.

Side of square plot $=64 \mathrm{~m}$
Length of rectangular plot $=70 \mathrm{~m}$
According to given condition,
\because Perimeter of rectangular plot $=$ Perimeter of square plot

$$
\begin{aligned}
\therefore & 2(l+b) & =4 \times \text { side } \\
\Rightarrow & 2(70 \mathrm{~m}+b) & =4 \times 64 \mathrm{~m} \\
\Rightarrow & 140 \mathrm{~m}+2 b & =256 \mathrm{~m} \\
\Rightarrow & 2 b & =256 \mathrm{~m}-140 \mathrm{~m} \\
\Rightarrow & 2 b & =116 \mathrm{~m} \\
\Rightarrow & b & =58 \mathrm{~m}
\end{aligned}
$$

Hence, the breadth of the field is 58 m .
Now, Area of rectangular plot $=l \times b$

$$
\begin{aligned}
& =70 \times 58 \mathrm{~m}^{2} \\
& =4060 \mathrm{~m}^{2}
\end{aligned}
$$

And, \quad area of square plot $=s \times s$

$$
\begin{aligned}
& =64 \times 64 \mathrm{~m}^{2} \\
& =4096 \mathrm{~m}^{2}
\end{aligned}
$$

Clearly
$4096 \mathrm{~m}^{2}>4060 \mathrm{~m}^{2}$
Hence, area of square plot $>$ area of rectangular plot
Difference between both areas $=(4096-4060) \mathrm{m}^{2}=36 \mathrm{~m}^{2}$
Hence, square plot has more area by $36 \mathrm{~m}^{2}$.
15. Diagonal of square $=8 \sqrt{2} \mathrm{~cm}$

$$
\begin{array}{lr}
\Rightarrow & \text { side } \times \sqrt{2}=8 \sqrt{2} \mathrm{~cm} \\
\Rightarrow & \text { side }=\frac{8 \sqrt{2}}{\sqrt{2}} \mathrm{~cm} \\
\Rightarrow & \quad \text { side }=8 \mathrm{~cm} \\
\text { Now, } \quad \text { area of square } & =\text { side } \times \text { side } \\
& =8 \times 8 \mathrm{~cm}^{2} \\
& =64 \mathrm{~cm}^{2}
\end{array}
$$

EXERCISE 21E

1. Perimeter of rectangular field $=\frac{\text { Total cost of fencing }}{\text { Cost per metre }}$

$$
\begin{array}{lr}
\therefore & 2(l+b)=\frac{2400}{30} \mathrm{~m} \\
\Rightarrow & 2(24 \mathrm{~m}+b)=80 \mathrm{~m} \\
\Rightarrow & 48 \mathrm{~m}+2 b=80 \mathrm{~m} \\
\Rightarrow & 2 b=80 \mathrm{~m}-48 \mathrm{~m} \\
\Rightarrow & 2 b=32 \mathrm{~m} \\
\Rightarrow & b=\frac{32}{2} \mathrm{~m} \\
\Rightarrow & b=16 \mathrm{~m}
\end{array}
$$

\therefore (b) is correct.
2. Perimeter of rectangular field $=2(l+b)$

$$
\begin{aligned}
& =2(34+18) \mathrm{m} \\
& =2 \times 52 \mathrm{~m} \\
& =104 \mathrm{~m}
\end{aligned}
$$

\because Cost of fencing $={ }^{`} 22.50$ per metre
\therefore Total cost of fencing $={ }^{`}(22.50 \times 104)={ }^{`} 2340$
\therefore (b) is correct.
3. Length of the rectangle $=\frac{\text { Area }}{\text { Breadth }}=\frac{650}{13} \mathrm{~m}=50 \mathrm{~m}$

Now, perimeter of rectangle $=2(l+b)$

$$
\begin{aligned}
& =2(50+13) \mathrm{m} \\
& =2 \times 63 \mathrm{~m} \\
& =126 \mathrm{~m}
\end{aligned}
$$

\therefore (d) is correct.
4. Let the breadth be b and length be $3 b$.

By the Pythagoras theorem,
$\therefore \quad(\text { Diagonal })^{2}=(\text { length })^{2}+(\text { breadth })^{2}$
$\Rightarrow \quad(6 \sqrt{10})^{2}=(3 b)^{2}+b^{2}$
$\Rightarrow \quad 360=9 b^{2}+b^{2}$
$\Rightarrow \quad 360=10 b^{2}$
$\Rightarrow \quad b^{2}=\frac{360}{10}$

$\Rightarrow \quad b^{2}=36$

$$
\Rightarrow \quad b=6
$$

So, Length $=3 \times 6 \mathrm{~cm}=18 \mathrm{~cm}$ and breadth $=6 \mathrm{~cm}$
Now, perimeter of rectangle $=2(l+b)$

$$
\begin{aligned}
& =2(18+6) \mathrm{cm} \\
& =2 \times 24 \mathrm{~cm} \\
& =48 \mathrm{~cm}
\end{aligned}
$$

\therefore (a) is correct.
5. Perimeter of square field $=\frac{\text { Total cost of fencing }}{\text { Cost per metre }}$

$$
\begin{array}{lc}
\Rightarrow & 4 \times \text { side }=\frac{2000}{25} \mathrm{~m} \\
\Rightarrow & \text { side }=\frac{80}{4} \mathrm{~m} \\
\Rightarrow & \text { side }=20 \mathrm{~m}
\end{array}
$$

\therefore (c) is correct.
6. Length of room $=5 \mathrm{~m} 40 \mathrm{~cm}=5.40 \mathrm{~m}$

Breadth of room $=4 \mathrm{~m} 50 \mathrm{~cm}=4.50 \mathrm{~m}$

$$
\begin{aligned}
\therefore \quad \text { Area of room } & =l \times b \\
& =5.40 \times 4.50 \mathrm{~m}^{2} \\
& =24.30 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore (b) is correct.
7. Length of lane $=150 \mathrm{~m}=150 \times 100 \mathrm{~cm}$

Breadth of lane $=9 \mathrm{~m}=9 \times 100 \mathrm{~cm}$
$\therefore \quad$ Area of lane $=l \times b$

$$
\begin{aligned}
& =150 \times 100 \times 9 \times 100 \mathrm{~cm}^{2} \\
& =13500000 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, area of 1 brick $=l \times b$

$$
\begin{aligned}
& =22.5 \times 7.5 \mathrm{~cm}^{2} \\
& =168.75 \mathrm{~cm}^{2}
\end{aligned}
$$

$\therefore \quad$ Number of bricks $=\frac{\text { Area of lane }}{\text { Area of } 1 \text { brick }}$

$$
\begin{aligned}
& =\frac{13500000}{168.75} \text { bricks } \\
& =80000 \text { bricks }
\end{aligned}
$$

\therefore (d) is correct.
8. Diameter of the circle $=7 \mathrm{~cm}$
$\therefore \quad$ Circumference $=\pi d$

$$
\begin{aligned}
& =\frac{22}{7} \times 7 \mathrm{~cm} \\
& =22 \mathrm{~cm}
\end{aligned}
$$

\therefore (b) is correct.
9. Circumference of circle $=88 \mathrm{~cm}$
$\Rightarrow \quad \pi d=88 \mathrm{~cm}$
$\Rightarrow \quad \frac{22}{7} \times d=88 \mathrm{~cm}$
$\Rightarrow \quad d=\frac{88 \times 7}{22} \mathrm{~cm}$
$\Rightarrow \quad d=28 \mathrm{~cm}$
\therefore (a) is correct.
10. Diameter of wheel $=70 \mathrm{~cm}$

Circumference of wheel $=\pi d$

$$
=\frac{22}{7} \times 70 \mathrm{~cm}=220 \mathrm{~cm}
$$

\because Distance covered in 1 revolution $=220 \mathrm{~cm}$
\therefore Distance covered in 50 revolution $=50 \times 220 \mathrm{~cm}$

$$
=11000 \mathrm{~cm} \text { or } 110 \mathrm{~m}
$$

\therefore (b) is correct.

HOTS

- Pattern of perimeter $\rightarrow 4,8,12,16,20,24,28,32,36,40$.
\therefore Perimeter of the tenth figure is 40 cm .

VALUE BASED

- Area of rectangular ground $=5270 \mathrm{~m}^{2}$

$$
\therefore \quad \begin{aligned}
\text { Breadth } & =62 \mathrm{~m} \\
\text { Length } & =\frac{\text { area }}{\text { breadth }}=\frac{5270}{62}=85 \mathrm{~m} \\
\text { Perimeter } & =2 \times(\text { Length }+ \text { Breadth }) \\
& =2 \times(85+62) \\
& =2 \times 147=294 \mathrm{~m}
\end{aligned}
$$

Hence, the perimeter of rectangular ground is 294 m .

EXERCISE 22

1. (a) Data : In our day-to-day life, we collect various numerical facts. The numerical facts are called data.
(b) Raw data : Data obtained in the original form is called raw data.
(c) Array : When the data is arranged in an ascending or a descending order, so that it can be arranged in a systematic order, then the data is called an array.
(d) Tabulation of data : Arranging the data in a systematic form of a table is called tabulation or presentation of the data.
(e) Observations : Each numerical figure in a data is called an observation.
(f) Frequency of an observation : The number of times a particular observation occurs is called its frequency.
2. Arranging the data in ascending order, we get the given data as :
$1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,5,5$
Now, we may prepare the frequency table, as shown below.

3. Arranging the data in ascending order, we get the given data as :
$5,5,6,6,6,6,7,7,7,7,7,7,7,8,8,8,8,8,9,9,10,10$
Now, we may prepare the frequency table, as shown below.

Number	Tally marks	Frequency			
5	$\\|\\|$	2			
6	$\\|\\|\\|$	4			
7	$H\|\mid$	7			
8	$H \mid$	5			
9	$\\| \mid$	2			
10	$\\| \mid$	2			
	Total	$\mathbf{2 2}$			

4. On arranging the given data in table, we get

5. On arranging the given data in table, we get

Size	Tally marks	Frequency			
4	$\\|\\|$	2			
5	$H \mid$	5			
6	$\\|\\|\\|$	4			
7	$\\|\\|\\|$	4			
8	H\|		6		
9	HY \\|	7			
	Total	$\mathbf{2 8}$			

6. On arranging the given data in table, we get

7. On arranging the given data in table, we get

8. (a) numerical figures (b) original (c) array (d) frequency (e) tabulation

HOTS

Temperature in ${ }^{\circ} \mathrm{C}$	Tally marks	Number of days			
32	\|				4
34	HHII	7			
36	HH HH	10			
38	HH.	6			
40	\|			3	

VALUE BASED

Grade	Tally marks	Number of students			
A	HH HH	10			
B	HT HH \|	11			
C	HH \\|			9	
D	HH HH	10			

EXERCISE 23

1. Scale : $\equiv 10$ fans sold

Now, we may draw the pictograph, as shown below :

Month	Number of fans sold
March	April
May	June
July	
August	

2. Scale:

We may draw the pictograph, as shown below :

Subject	Number of students passed
English	
Mathematics	

Hindi
3. Scale : $=10$ stools

We may draw the pictograph, as shown below :

We may draw the pictograph, as shown below :

Day	No. of absentees
Monday	

Tuesday	
Wednesday	
Thursday	
Friday	

5. (a) Number of chapatis were made on Monday $=4 \times 50=200$
(b) Number of chapatis were made on Thursday $=4 \times 50=200$

Number of chapatis were made on Tuesday $=7 \times 50=350$
\therefore Difference of numbers of chapatis were made on these days

$$
\begin{aligned}
& =350-200 \\
& =150
\end{aligned}
$$

(c) Number of chapatis were made on Thursday $=4 \times 50=200$

Number of chapatis were made on Friday $=8 \times 50=400$
\therefore Total number of chapatis were made on these days

$$
\begin{aligned}
& =200+400 \\
& =600
\end{aligned}
$$

(d) The maximum number of chapatis were made on Friday.

Number of chapatis were made on Friday $=8 \times 50=400$
6. (a) Number of mango trees $=3 \times 8=24$
(b) Number of banyan trees $=4 \times 8=32$
(c) Number of neem trees $=5 \times 8=40$
(d) Total number of trees $=24+32+40=96$
7. (a) Number of scooters were sold on Monday $=5 \times 6=30$
(b) Number of scooters were sold on Tuesday $=4 \times 6=24$
(c) Sale of the scooters was maximum on Friday.

Number of scooters were sold on Friday $=7 \times 6=42$
(d) Sale of the scooters was minimum on Saturday. Number of scooters were sold on Saturday $=2 \times 6=12$

HOTS

- Do yourself

$=$
 Chapter 24 Bar Graphs

EXERCISE 24

1. (a) The given bar graph shows the different modes of transport to school used by 51 students of a locality.
(b) Maximum number of students use bicycle for going to school.
(c) 14 students use bus for going to school.
(d) $6+10+16+5=37$ students do not use bus for going to school.
2. (a) The production was maximum in the 2 nd week.
(b) The production was minimum in the 4th week.
(c) The average production is $\frac{600+1000+800+500+700}{5}=\frac{3600}{5}$
$=720$ per week
(d) $600+1000+800=2400$ cycles were produced in the first three weeks.
3. (a) The given bar graph shows the number of members in each of the 60 families of a colony.
(b) 10 families have 3 members each.
(c) 5 couples have no child.
(d) A family of 4 members is most common.
4. (a) The given bar graph shows the marks obtained by a student in each of the four subjects in an examination.
(b) The student is poorest in Science.
(c) The student is best in Mathematics.
(d) He got more than 40 marks in Hindi and Mathematics.
5. Scale : 1 unit length $=1000$ items

6. Scale : 1 unit length $=2000$ motor cycles

HOTS

- Milk consumption per day by each family in a colony.

jjjjjjj

